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CHAPTER 1. INTRODUCTION 

The pace of innovation in financial markets has increased in recent years. Call option 

trading in sixteen individual common stocks was authorized only twenty years ago on the 

Chicago Board Options Exchange (CBOE). Today put options as well as call options on 

about 360 individual stocks are traded on five exchanges-the American Stock Exchange 

(AMEX), the Philadelphia Stock Exchange, the Pacific Coast Exchange, the Midwest Stock 

Exchange, as well as on the CBOE-and the volume of the stock option trading measured by 

the value of the underlying contracts rivals that of the New York Stock Exchange (NYSE). 

This period has also seen the introduction of futures contracts on financial instruments, such 

as government securities and other debt instruments, currencies, and stock indexes. The most 

recent innovation has been the creation of options on instruments other than individual 

common stocks: bonds, stock indexes, currencies, and commodities. 

A tremendous amount of research work has also been developed since the discovery 

of the option pricing model by Black and Scholes in 1973. The empirical research on options 

has focused on either testing the Black-Scholes model price and its underlying assumptions 

or developing an alternative call option pricing model. The study of options is useful for 

understanding not only the behavior of option prices but also of stock prices. 

The main part of this study is the investigation of the mispricing of the Black-Scholes 

model. However, in order to calculate the model price, the stock volatility needs to be 

estimated first. These estimated stock volatilities have been documented by many studies to 

be sensitive to the change in option positions, i.e., maturities and also striking prices. Thus, 

the study examines whether the stock volatilities implicit in option prices vary across 
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maturities, or striking prices, or both. The results of these tests provide the foundation for 

investigating the mispricing of the Black-Scholes model. 

Based upon the acceptance of the Black-Scholes model with flexible implied 

volatility across maturity month and degree of moneyness, a robust model is built by 

incorporating the linear effect of exercise opportunity and time to maturity directly into the 

Black-Scholes model. In addition, as documented by many studies that the mispricing of the 

model is serially correlated, the error term of the robust model is assumed to follow a first 

order autoregressive process. Furthermore, in order to investigate the systematic mispricing 

of the Black-Scholes model across option positions, all the factors affecting call option prices 

are specified additively across option positions. As the result, the model is so general that it 

can be used to not only investigate the systematic mispricing of the Black-Scholes model, but 

also to check the implication of the Black-Scholes assumption, examine the behavior of the 

at-the-money implied volatilities that are claimed to be stable over short maturities. 

In this thesis, the basic principles of regular call option valuation are explained in 

Chapter 2. The valuation process begins by determining the per share value of a regular call 

option at expiration. Then, the lower and upper bounds of regular call option are determined. 

The last part of the Chapter shows how to compute the Black-Scholes model price by using 

simple hand calculations. 

In Chapter 3, the famous Black-Scholes option pricing model is derived. The Black-

Scholes option price is the solution to the general equilibrium pricing frame work. However, 

the Black-Scholes formula can only apply to European call options. Therefore, it can only be 

used for valuing American call options if early exercise is most unlikely. Fortunately, the 

Black-Scholes formula can be generalized to include the case of American call options on 

dividend-paying stocks. This extended model will be discussed later at the end of Chapter 2. 
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Most of the discussion in Chapter 4 concerns testing the validity of the Black-Scholes 

model for pricing of the call options. A survey of the literature reveals four major approaches 

for testing the model's validity. The first approach is based on creating neutral hedge 

positions and testing the behavior of the returns from the investment. The approach 

eliminates the problem of risk-adjustment for investments in options. Thus, the option 

market efficiency can be tested using this technique. The second approach is based on 

imputing the standard deviations from actual option prices by using a pricing model. The 

behavior of the implied standard deviation is then investigated to determine the validity of 

the assumed model. The third approach uses a direct comparison of the model prices to 

actual prices. The tests are intended to show whether model prices are unbiased estimators of 

the actual prices or whether there are consistent deviations between the model and market 

prices. The fourth approach for testing pricing models is by means of simulations of 

deviations from the basic assumptions of the models. According to this approach the 

sensitivity of the model prices to empirical deviations from the assumptions is tested. 

The main body of the study is contained in Chapter 5. This chapter also includes the 

review of literature investigating the systematic mispricing of the Black-Scholes model. The 

development of the robust model begins with testing the implications of the Black-Scholes 

model assumption of constant implicit volatility across degree of moneyness and maturity 

months. Then, a robust model is developed based on the results of the test. The robust model 

also corrects the problem of specification error that has been faced with the convention 

analysis in the past by incorporating the linear effect of striking price and maturity, and also 

the first order moving average directly into the model. With these modifications, the 

systematic mispricing of the Black-Scholes model can be meaningfully investigated. The 

thesis also examines the behavior of the at-the-money implied volatility and its mispricing 

behavior. Furthermore, the study compares the results of the mispricing obtained from the 
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robust model to the results of two conventional analyses. It turns out that the regression 

results of the conventional analysis may misinterpret the mispricing of the Black-Scholes 

model. For another conventional analysis that directly computes the means of mispricing, the 

study shows that the precision of the estimates obtained from this conventional analysis is 

lower than that of the robust model. 

The robust model also offers a way to estimate the implied volatility that is stable 

across striking prices and maturities. As a result, the estimate may be more closely related to 

the variance rate of stock return than the at-the-money short maturity implied volatility. As 

many studies have used the at-the-money short maturity implied volatility to analyze, for 

example, the impact of stock split, stock dividend, dividend policy, and their announcement 

effects to the changes in the variance rate of stock return. The estimated implied volatility 

obtained from the robust model can be used instead of. Thus, the robust model is useful for 

further research in not only the option area but also in the stock area. 
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CHAPTER 2. VALUATION OF THE CALL OPTION IN GENERAL 

2.1 Overview 

An option contract gives the holder the right to buy (in the case of a call option) or to 

sell (in the case of a put option) a specified quantity of a security (called the underlying 

security) at a specified price (called the exercise price or striking price). Conversely, the 

writer of the option contract is obligated to sell (in the case of a call option) or to buy (in the 

case of a put option) that quantity of the security at the exercise price. The trading unit is 

typically one hundred shares of stock, although under certain circumstances it may be more 

than this amount. 

The buyer of the option pays a premium to the seller to secure the rights of buying or 

selling the underlying security at the exercise price. This premium is the market price of the 

option. The holder of the option may choose to exercise the right to buy or sell at any time 

during the life of the option; if the investor does not choose to do so, the option expires and 

is worthless after the expiration date. 

Listed options are standardized puts or calls traded on a national securities exchange 

or in the over-the-counter market via the NASDAQ system (NASDAQ is a computer-

oriented, broad based indicator of activity in the unlisted securities market, updated every 

five minutes). The Option Clearing Corporation (OCC) is issuer and guarantor of exchange-

traded and NASDAQ put and call options. It also serves as the clearing agency for options 

transactions. Other over-the-counter options are traded directly between buyer and seller, and 

have no secondary market and no standardization of striking prices and expiration dates. 



www.manaraa.com

6 

In general, options are traded during the same hours in which the underlying 

securities are traded in their primary markets. Options trading continues for ten minutes after 

the close of each day's stock trading (4:10 P.M. Eastern time). On the business day prior to 

the expiration date, all options cease trading at 4:00 P.M. Eastern time. 

In 1971, the Chicago Board of Trade (CBT), the major U.S. futures contracts 

exchange, began research and development of an exchange-traded (listed) option markets. 

Two years later, the Chicago Board Options Exchange (CBOE) opened with trading in call 

options on sixteen underlying stocks. The growth of the listed option market was so great 

that many new stocks were added to the list. Within three years, a trio of similar exchanges 

were launched, and within a decade options trading column exceeded that of the underlying 

stocks, on a shared-equivalent basis. 

The ability to easily buy and sell stock options also spawned a variety of new uses for 

them, and sophisticated investors quickly became familiar with complex option strategies, 

such as, butterfly spreads and straddles, as a means to diversify and hedge a portfolio. The 

enormous appeal of options, particularly at a time when interest in securities was subdued, 

prompted Wall Street to go one step further and create kindred instruments that were 

unburdened by an underlying instrument, namely options on stock indexes and options on 

stock-index futures. These inventions enabled an investor to buy the equivalent of an entire 

basket of stocks on margin that was less than half that required to buy the equities 

themselves. 

All options traded on the CBOE are written on stocks traded on the New York Stock 

Exchange (NYSE). Therefore, trading in the CBOE takes place during the hours when the 

NYSE is open for trading. In order to create and maintain a liquid, active market, the CBOE 

had to standardize the terms of the options. The standardization concerns maturity dates and 

striking prices. The CBOE declared 4 months to be expiration months (January, April, July, 
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and October) and the expiration time to be 11:59 P.M. Eastern time on the Saturday 

immediately following the third Friday of the expiration month. The maximum duration of a 

CBOE option is, thus, 9 months, and therefore, at any given time, there are options available 

for at least 3 expiration months. The expiration time is not the same as the earlier exercise 

cutoff time. In order to exercise an option, a customer must so instruct his broker prior to the 

exercise cutoff time. For brokers who are members of the National Association of Securities 

Dealers (NASD) or of an exchange, the exercise cutoff time is 5:30 P.M. Eastern time, on 

the business day immediately preceding the expiration date, the latest time is 8:00 P.M. 

Eastern time. The striking prices are always in multiples of $5 (or $10 for the stock above 

$100). On the first day of an option, the striking price will be that multiple of $5 which is the 

closet to the market price of the underlying stock at that time. 

In June, 1976 the American Stock Exchange also began trading listed options. The 

success and growth of both options market places brought about the opening of three other 

exchanges to such trading: the Pacific Exchange, the Philadelphia Stock Exchange and, in 

1984, the New York Stock Exchange. In addition, trading in NASDAQ options conmienced 

in 1985. 

2.2 Call Option Valuation 

In this section, the basic principles of regular call option valuation will be explained. 

The Black-Scholes formula is presented in the following section. In general, the per share 

value of a regular call option is presented as a function of the current share price of its 

underlying stock. The reason why people concentrate on the per share value of an option is 

that option prices are always quoted on a per share basis, even though , an option contract 

usually covers 100 shares. In addition to the current share price, the per share value of a 
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regular call option also depends on a number of other objective factors-namely its exercise 

price, its time to expiration, and the risk-free rate of interest as well as on investor's 

subjective expectations with respect to the future behavior of the stock price. 

The exercise price is the contractual share price at which a fixed amount of shares 

(usually 100) of the underlying stock can be purchased by the option holder when exercising 

the option. Usually this exercise is a multiple of $5 or $10, when established, option 

contracts expire about nine months later. The risk-free rate of interest is commonly 

considered to be the yield on treasury bills with roughly the same expiration date as the 

option. 

For the time being, the call option value per share (V^) will be expressed as a 

function, f, of only three determinants: the current share price (S), the exercise price (K), and 

the remaining time (T), as shown in the Equation 2.1: 

V„ = f(S,K,T) (2.1) 

Both S and T are the only two arguments of function (2,1) that vary over the life of the 

option, whereas K is usually an invariable option feature that is fixed at the time of issue. 

Firstly, the analysis of the above function focuses on the way in which the option value 

depends on the current stock price level, assuming a given time to maturity. Next, the 

changes in the value of an option when its remaining life shrinks as time goes on will be 

studied. 

From the outset, it is useful to point out that, other things being equal, the option 

value per share would be halved. This can be shown as follows. Suppose that an investors 

has a number of options to buy 100 shares of a particular common stocks at an exercise price 

K before a certain expiration date, and suppose there is a 2-for-l stock split'. All other things 

' Firm's policy to double the number of shares outstanding. Thus, the earnings, dividends per share, and the 
stock price will be halved. 
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being equal, such a stock split would cut the share price in half. Unless there are contractual 

provisions to adjust the terms for exercising the options in such a case, this share price 

reduction would decrease the position of the investor, as he could probably no longer 

exercise his options at a price that is attractive relative to the new share price. The value of 

the options could, however, be immunized against such a stock split by a contractual 

provision for (1) cutting the exercise in half and (2) doubling the number of shares the 

investors is entitled to buy. As a result, the investor would be able to acquire the same 

fraction of all outstanding stock for the same total dollar investment as before the stock split. 

In addition, since the value of the company has not been changed by the stock split, the 

acquired shares of common stock still have the same value. 

To illustrate this point, assume that the stock is priced at $50 a share, and that the 

exercise price of the option is $45. If the total number of outstanding shares is 1,000,000, 

and if the investor under consideration has 80 call options, he would be entitled to buy 

80(100) = 8,000 shares, or 0.80 percent of all shares outstanding, at a total price of 

(8,000)($45) = $360,000, which represents 0.72 percent of the current company value of 

(1,000,000)($50) = $50,000,000. If a 2-for-l stock split would occur, the share price would 

drop to $25. Without any adjustment, the 80 options would become worthless as the investor 

would better buy 8,000 shares at $25 a share, than exercise his 80 options at a price of $45 a 

share. However, if the occurrence of the stock split would allow him to buy double the 

original number of shares at half the original exercise price, he would buy (2)(80)(100) = 

16,000 shares at a price of 45/2 = $22.50 per share. As before, he pays only (16,000)($22.50) 

= $360,000 or 0.72 percent of the current company value of (2,000,000)($25) = 

$50,000,000, to acquire 16,000/2,000,000 = 0.80 percent of all shares outstanding. Under 

these circumstances, there is no reason why, other things being equal, the value of his 

options would have changed in reaction to the stock split. But since the number of shares that 
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option holder is entitled to buy has doubled (16,000 instead of 8,000 originally), the option 

value actually is cut in half. 

Summing up, this example clearly shows that, other things being equal, the option 

value per share is halved whenever both the exercise price and the share price are halved. 

This property of the value of regular call options can be expressed in terra of the value 

function defined in Equation 2.1: f(S,K,T)/2 = f(S/2,K/2,T). The left side of the 

equation corresponds to half the original value (per share) of an option to buy shares at an 

exercise price K when the current share price is S while the right side equals to the value (per 

share) of an option to buy the same stock at half the original exercise price when the share 

price is halved as well. 

By extension, it is easily seen that the following more general property applies; 

= f(S/l ,K/X,T) (2.2) 

where X represents any positive real number. Substituting K as a value for X in Equation 2.2 

to obtain: f(S,K,T)/K = f (S / K,K/K,T). In view of Equation 2.1, this formula can be 

reduced to: / K = f(S/K,l,T). Finally, the right-hand side of this equation can be 

expressed as a value function f of only two variables S / K and T as the following: 

V„/K = f '(S/K,T) (2.3) 

From this equation, it is clear that it is possible to omit the exercise price of a call 

option as a separate value per share, as long as both the option value and the stock price are 

expressed as a fraction of the exercise price indicated on the option. Let V, and S' denote 

these fractions, respectively, that is, if by definition: 

v;  = V„/K 

S'  = S/K 
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Equation 2.3 can also be written as: 

v;  = f '(S' ,T) 

2.2.1 Value of a Call Option at Expiration 

In order to determine the per share value of a regular call option at expiration, one 

must find the specification of f(S,K,0) for any given values of S and K. At the time of 

expiration, the option holder can do one of the following: either exercise the option or he can 

let the option expire, in which case it becomes worthless. By exercising the option, he would 

buy shares at a discount or at a premium relative to the current share price, if the current 

share price is greater or smaller than the exercise price. Obviously, the option holder would 

only choose to exercise the option if he can buy the shares at a discount (i.e., if the option is 

in-the-money). In this case, its value per share is equal to the difference between the current 

share price S and the exercise K. However, if the option is out of the money at expiration, 

this procedure would lead to a loss and it would therefore be better to let the option expire 

without exercise. 

The above conclusion can be summarized as follows: 

f(S,K,0) = max{0,(S-K)} (2.4) 

Indeed, according to this formula, the option value per share at expiration is equal to (S - K) 

if 5 > AT ( in the money), and to 0 if 5 < iiT (out of the money). 

The value of function f(S,K,0), as determined by Equation 2.4, not only represents 

the value per share of an expiring option, but also the intrinsic value or parity value per share 

of a nonexpiring option. In addition, f(S,K,T) - f(S,K,0), the difference between the full 
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option value per share and the intrinsic value per share, is usually referred to as the option's 

time value per share. 

To illustrate the above formula, consider an expiring option with an exercise price of 

$30. If the current share price of the underlying stock is $39, this option would be in the 

money, and therefore, its value per share would be equal to $39 - $30 = $9. However, if the 

current share price is $27, the option would be out of the money, and therefore, it would 

have a zero value. If the option were currently not expiring, these respective values of $9 and 

$0 could still be interpreted as the option's intrinsic value per share. 

Equation 2.4 is graphically illustrated in Figure 2.1. The straight line with a slope of 

45° that cuts the horizontal axis at K represents the difference between the share price S and 

the exercise price K, which corresponds to the profit per share earned when the option is 

exercised. As a negative profit or less can always be avoided by letting the option expire 

without exercising it, this difference only represents the option value per share if 5" > /sT, that 

is, only the part of the 45° line is relevant. If 5" < AT at expiration, the option's value per share 

is reduced to zero, and is therefore represented by a straight line that coincides with the 

horizontal axis. As a result, the option value per share at expiration for all possible stock 

price is represented in Figure 2.1 by the kinked straight line OKF. 

intrinsic 
value S-K 

S 
0 K 

Figure 2.1: Intrinsic Value 
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Alternatively, by expressing the share price as a function of the exercise price, the 

option value per share can also be derived as a fraction of the exercise price from the 

following calculation formula: f'(S /K,0)=max{0,(S / K) -1}, or, equivalently, 

For example, reconsidering the preceding numerical example of an expiring option 

with an exercise price of $30, if the current share price is $39, a share of common stock 

would be worth 1.3 times the exercise price, and the option value per share would therefore 

be equal to 1.3-1=30 percent of the exercise price. At a current price of $27, however, a 

share would be valued at only 90 percent of the exercise price. As this fraction in smaller 

than 1, the corresponding option value per share would be zero. If the option were not 

currently expiring, it would have an intrinsic value of 30 percent and 0 percent of the 

exercise price, respectively. 

Equation 2.5 can also be represented by a kinked straight line, as shown in Figure 

2.2, where the option value per share, as a fraction of the exercise price, corresponds to the 

broken line OK'F'. 

In this subsection, only the regular call options at their maturity were considered. At 

maturity, the option holder can only choose between exercising the option and letting it 

expire. This choice was completely determined by the current share price relative to the 

exercise price. 

f ' (S' ,0) = max{0,S'-l} (2.5) 

intrinsic 
value 

F 

O S 

Figure 2.2: Intrinsic Value as a Fraction of Exercise Price 
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To consider options before their expiation date, however, additional factors must be taken 

into account, like the time value of money as measured by the risk-free rate of interest, and 

the investor's expectations about the unknown future share prices up to the time of 

expiration. The role of these other factors will be discussed in the next subsection. 

2.2.2 Lower Limits on the Value of a Call Option Before Expiration 

When considering a call option some time before expiration, the value of all the 

relevant parameters at the same point at the same tine must be carefully considered. Indeed, 

by the assumption that money has a positive time value, one cannot simply add or subtract 

monetary values of cash flows at different points in time. Only the equivalents of these cash 

flows at one and the same point in time can be compared. 

In order to determine the current option value per share, therefore, the current share 

price should be compared to the present value of the exercise price, rather than to the 

exercise price itself. Indeed, if an option is exercised at future time, the exercise price also 

refers to a future cash flow resulting form a future stock purchase transaction. For example, 

by assuming that the option is exercised at expiration, the present value of the corresponding 

cash flow would be equal to K(1 + r)"\ where t represent the remaining time to expiration 

and r the applicable risk-free rate of interest. At least this would be its present value if the 

interest were compounded one per unit of time. In the case of continuos compounding, the 

present value is equal to Ke"". In general, let this present value of the exercise price at 

expiration be denoted by PV(K,r,t). As this present value is proportional to K, it is also equal 

to K times PV(l,r,t), where PV(l,r,t) represents the present value of a cash flow of 1 dollar 

at expiration for a rate of interest r. PV(l,r,t) is often referred to as the present value interest 

factor at a specified rate for t time units. For example, the present value interest factor at 1 
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percent per month for 5 months would be equal to (1 + r) '=(1.01) ^ = 95.15 percent if 

interest is compounded on a monthly basis, and it turns out to be equal to e~"=e"°® =95.12 

if interest is compounded continuously. 

If S > PV(K,r,t), the option holder could always realize a risk-free profit with a 

present value equal to S-PV(K,r,t) per share by short selling the stock at the current price S 

and buying it back at a price K and by exercising the option at its expiration. If S < 

PV(K,r,t), such an option would lead to a loss, which could, however, always be avoided by 

simply letting the option expire instead. This means that the option holder can always (1) 

avoid losing money and (2) realize a guaranteed minimum profit per share equal to S-

PV(K,r,t) whenever the current stock price in high enough to make this latter expression 

positive. The option value per share, therefore, can never be smaller than (1) zero, and (2) S 

- PV(K,r,t): 

V„ > max{0,S-PV(K,r,t)} (2.6) 

For example, if interest is compounded once a month at a risk-free monthly rare of 1 percent, 

and if the current price of a share of common stock is $39, the value per share of an option to 

buy shares at an exercise price of $30 within the next 5 months is smaller than $39 - (95.15 

percent )($30) = 10.55. As it was determined before, that the given share price of $39 

implies an intrinsic value of $9, this also means that at 5 months to expiration the option's 

time value is not less than $10.55 - $9 = $1.55 per share. 

The lower limit on the option value per share described by Inequality 2.6 is 

sometimes referred to as the option's floor value. It is represented in Figure 2.3 by the kinked 

line OGH, while the intrinsic value per share is represented by OKF. Point G on the 

horizontal axis corresponds to the present value of the exercise price. Therefore, the floor 
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floor value 
Intrinsic 

valiifi. 

PV(K) 

Figure 2.3: Option Floor Value 

OGH is obtained by shifting the intrinsic value line OKF in a parallel way to the left over a 

distance equal to the difference between the exercise price and its present or discounted 

value. 

2.2.3 Exercising an American Call Option Before its Expiration Date 

From Figure 2.3 it is clear that, if at some time before maturity the stock price 

exceeds the discounted value of the exercise price, the option value is always strictly greater 

than its intrinsic vale. In particular, the value of any unexpired in-the-money call option 

always exceeds its intrinsic value. As the intrinsic value of such an option is the profit that 

can be realized by exercising it and selling the acquired stock immediately thereafter, it 

would be more profitable to sell that option than exercise it. 

On the other hand, if an option is out of the money, its exercise price is by definition 

higher than the current stock price, and therefore, it would be cheaper to buy the stock 

directly than to buy it by exercising the option. 

Summing up, an American call option, whether in the money or out of the money, 

should never be exercised before maturity^. This result may seem paradoxical, but can be 

explained by the fact that when exercising a call option, only the intrinsic value of that 

^There exists an exception to this rule, namely, it may sometimes pay to exercise a call option just prior to an 
ex-dividend date for the underlying stock. The reason is that when the option is exercised after that date, the 
option holder is no longer entitled to receive the dividend. 
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option is realized, but not its time value. This time value can only be realized by selling the 

option. Therefore the basic dilemma that any holder of an unexpired option is facing is not 

whether or not to exercise the option, but rather, whether or not to sell the option, where the 

alternative to selling is to let it mature. Furthermore, since American call options are never 

exercised before maturity, they give the option holder no real advantage over European call 

options. Consequently, the value of American call options must be identical to the value of 

corresponding European call options with the same characteristics. 

2.2.4 Addition Properties of a Call Option Before Expiration 

Whenever an option holder can realize a profit by selling stock at the present time at 

its current market price S and buying it back later at the exercise price K, the present value 

of that profit was shown previously to correspond to the option's floor value. When these 

transactions do not lead to a profit, that floor value is zero. The way to investigate how much 

the current market value of the option exceeds its floor value, is to examine at the same point 

in time for different stock price levels that cover a whole range, from very low to very high 

values of S. First, consider the case in which S is so small relative to the option's exercise 

price K, and that it is very unlikely that it will become greater than K before the option's 

expiration date. As it is virtually certain that such an option will remain out of the money 

until that date, it is said to be it far out of the money. In view of its very small profit 

potential, its market value will not significantly differ from zero; that is, it will not 

significantly differ from its floor value. 

If, starting from such a low stock price level, S is gradually moved higher, the option 

value would leave its floor and gradually increase, even though, the floor value itself would 

remain zero as long as S < PV(K,r,t). The reason is that even though the option cannot be 
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profitably exercised under those circumstances, there is always a probability that the stock 

price may climb higher later on, and exceed PV(K,r,t) sometime before the option's 

expiration date. If and when this happens, a profit can be realized by selling the stock and 

exercising the option at maturity. This prospect of future gain opportunities, in combination 

with the fact that one can always avoid losses by letting the option expire, causes the option 

to have a positive value. The better the prospect of future gains is considered to be by 

investors, the greater this option value. In particular, as this prospect is better the smaller the 

difference between the stock price and the discounted exercise price PV(K,r,t), the option 

value will increase with increasing stock price levels. And, since the floor value is constantly 

equal to zero in the range of stock price levels below PV(K,r,t), the option's excess value 

over its floor value will increase in that range as well. 

At this point, it is the time to determine what happens to that excess value when 

considering the further increased in the stock price level beyond the discounted value 

(PV(K,r,t)) of the exercise price. Beyond that level, risk-free profits could be realized by 

immediately selling stock at its current market price and repurchasing the stock by exercising 

the option at expiration. These profits are greater the higher the stock price, which causes the 

option's floor value to rise when higher stock prices are considered. At the same time, 

however, the prospect of making even bigger profits by delaying the stock sale starts 

deteriorating. On fact, in case of decline in the future stick price, such a delaying would lead 

to smaller rather than bigger profits. Even worse, if that decline causes the stock price to 

become smaller than the discounted value of the exercise price, selling the stock would no 

longer be profitable. Obviously, the greater the current price, the greater the potential 

decrease in profits, and therefore the less attractive the prospect resulting from a delay in the 

stock sale. 
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This phenomenon forces the option's excess value over its floor value to gradually 

diminish when increasingly higher current stock prices are considered beyond the discounted 

exercise price. For current stock prices that are very high relative to its exercise price, that 

excess value will virtually have vanished and the option is said to be deep in the money. Its 

value can, for all practical purposes, be considered to coincide with its floor value. In fact, at 

this point the option starts behaving in the same way as the underlying stock. Thus, the 

change in the stock price is reflected in a matching change in the per share value of the 

option. 

max<0,S-PV(K)> 

Figure 2.4: Option value 

These results are graphically illustrated in Figure 2.4, where the curvilinear line 

represents the option's market value per a share. As in the preceding Figures, the option's 

floor value and the intrinsic value per share are again represented by broken lines. As was 

shown by Merton (1973), the curve representing the option's market value per share will 

increase with rising stock prices below the discounted exercise price PV(K,r,t), but decrease 

with rising stock prices above that level. The maximum excess value therefore is reached 

when S = PV(K,r,t). 

Figure 2.4 also shows that the intrinsic and floor values of an option coincide at the 

zero level for stock prices below the discounted exercise price PV(K,r,t). As a consequence, 

the total value of the option, the excess value over its floor value, and its time value all 
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coincide for these stock price levels. However, if the stock price is greater than the 

discounted exercise price, the floor value is strictly greater than the intrinsic value, due to the 

time value of money by which the exercise price is discounted. 

Furthermore, this difference between the floor value and intrinsic value must be 

added to the option's excess value to obtain its time value. The time value, therefore, has two 

distinct components. Gepts (1987) has pointed out that the option time value consists of: (1) 

the time value of money by which the exercise price is discounted, that is, the interest that 

can be earned by delaying the exercise of the option until its expiration date, and (2) The 

value derived form the prospect of possible sizable increases in realizable profits between 

now and the expiration date, in combination with only limited risks of profit decreases. 

Realizable profits go up or down together with the stock price. However, while they can 

increase over time in an unrestricted way, they can never turn into losses in view of the built-

in zero-level floor, no matter how far the stock price would fall. Still, for deep-in-the-money 

options, the potential profit decreases and related risks are so great that they totally offset the 

chances for further gains. At this point, the second component of the option's time value 

vanishes, and that the total option value is reduced to its floor value. 

2.3 The Black-Scholes Model 

To this point, only the general shape of the course that describes the relationship 

between the option value and the stock prices has been determined. The specific numerical 

value of a call option can determined according to the Black-Shoes option valuation formula. 

Black and Scholes (1973) demonstrated how this can be done under certain 

simplifying assumptions. The main assumptions are: 
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• The stock price follows a random walk and the continuously compounded 

return on the stock is normally distributed. 

• The rate of interest is constant until the option's maturity date. 

• There are no transaction costs, no taxes, and no penalties for short selling. 

• The stock do not pay a dividend during the life of the option. 

Their formula has gained wide recognition, and it is generally used by professional 

investors to estimate the value of options. Although the formula itself is not simple in its 

appearance, it can easily be applied, even by less experienced investors. Nowadays it is a 

common feature of investment packages for personal computers and it is also available to 

users of some of the more advanced programmable hand calculators. It specifies the option 

value per share as estimated by the Black-Scholes formula is as follows: 

V„ = SN(d,)-PV(K,r,t)N(dJ, (2.7) 

where 

d. = k(S'K) + (r+.5o'), q.:) 

CTVt 

avt 

The symbol N in Equation 2.7 represents the'cumulative standardized normal probability 

distribution. That is N(d,) and N(d2) are the probabilities that a normally distributed 

random variable, with a mean of 0 and a standard d deviation of 1, does not take values 

greater than d^ and d^, respectively. The parameter r in the above formulas again represents 

the continuously compounded risk-free rate of interest, which implies that PV(K,r,t)=Ke"" 

in Equation 2.7. Finally, the symbol which appears in Equation 2.8 and 2.9, stands for 

the volatility of the stock price as measured by the variance per unit of time of the 

continuously compounded rate of return on the stock. It should be noted that the variance. 
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and not its square root (the standard deviation) is proportional to the length of the time 

period over which it is defined. Therefore, when redefining the time unit, one should first 

adjust the variance in the same proportion, then take the square root to determine the 

adjusted value of the standard deviation. First, adjusting the standard deviation, and then 

raising the adjusted standard deviation to the power 2 to determine the variance, would 

definitely lead to incorrect volatility figures. 

In total, the Black-Scholes model has five parameters, namely S, K, r, t, and Cash 

dividend payments do not show up as a parameter because, strictly speaking, the formula 

only applies if no cash dividends are paid during the remaining life of the option. The 

volatility cannot be observed, as it reflects investors' expectations about the future behavior 

of the rate of return on the stock. It can, however, be estimated form historical stock price 

fluctuations, since the Black-Scholes model is derived under the assumption of an identically 

distributed rate of return over time. If this assumption in fact were strictly true over all 

periods, then estimates of the variance from historical data would be very good. As an 

example of this procedure, assume that an investor wishes to estimate the appropriate 

variance for some stock using one year of historical weekly data. The price relative for each 

stock is simply the price at the end of the week plus any dividends divided by the price at the 

beginning of the week. The natural logarithm of the price relative is the continuously 

compounded rate of return, and can easily be computed by applying the standard formula to 

the sequence of continuous compounded rates of return. For example, standard deviation is 

continuously compounded weekly standard deviation to a yearly standard deviation, simply 

multiply the square root of 52. 

where x, is the logarithm of the price relative. To convert the 
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To illustrate the formula, the example from the previous section is used by assuming 

a risk-free rate of 1 percent per month, a current stock price of $39, a remaining life of 5 

months, and an exercise price of $30. Using the symbols of this chapter, this means that r = I 

percent per month, that t = 5 months, that S = $39, and K = $30. In addition, let the stock's 

volatility equal ( 28 percent )2 = .0784 percent, or 0.0784 / 12 = 0.0065 per month. The 

values of parameters d, and dj in the Black-Scholes formula can be determined as follows: 

. _ ln(39/30) + 5t.0I+(.5)(.0065)] 
V(.0065)(5) 1 8228 

. _ ln(39 / 30)+5[.01-(,5)(.0065)] , 
V(.0065)(5) '6425 

One may wish to use the following polynomial approximation which may have been 

applied to create the standard normal tables. The cumulative normal probability can be 

computed by 

N(x) = 1 -(b,k + b^k" + b^k" + b.k" + b^k') 
271: 

where k = 1 / (1 + px) and, 

bi = .31938153, b, = -1.821255978, 

b; = -.356563782, b, = 1.330274429 , 

bj = 1.781477937, and p = .2316419. 

This approximation produces values on N(dJ and N(d2) can be found from the area under 

the standard normal distribution from -®oto d,, respectively: 

N(d,) = N(1.82) = .9656 

NCdj) = N(1.64) = .9495 

which lead to the following option value per share: 



www.manaraa.com

24 

V„ = SN(d,)-Ke-:'N(dJ 

= ($39)(.9656) - ($30)(e-°^)(.9495) = $10.56 

Apparently, the value of this option is only slightly higher than its previously 

determined floor value of $10.46. This option has an intrinsic value of $9 which can be 

concluded that its time value per share is $10.56 - $9 = $1.56. This time value consists of 

$30 (1 -e"°^) = $1.46 of the time value of money by which the exercise price is discounted, 

and for the $0.10 excess value that reflects the degree by which the chances of making even 

higher profits from a further increase in the stock price outweigh the risk of a limited decline 

in profits that would result from a decrease in the stock price. 

Some important conclusions can be drawn about the direction in which changes in the 

parameter values affect the option value. It can be shown that a call option is more valuable: 

• the higher the current stock price relative to the exercise price, 

• the higher the risk-free rate of interest, 

• the longer the remaining time to expiration, and 

• the greater the volatility of the underlying stock. 
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CHAPTER 3. THE BLACK-SCHOLES OPTION PRICING MODEL 

In this chapter the famous Black-Scholes option pricing model will be derived. 

Although, the call option price is the solution to the general equilibrium pricing frame work, 

the Black-Scholes option pricing model can also be treated as the risk-neutral or preference-

free pricing of options. However, the Black-Scholes formula can only apply to European call 

options. Therefore, it can only be used for valuing American call options if early exercise is 

most unlikely. Fortunately, the Black-Scholes formula can be generalized to include the case 

of American call options on dividend-paying stocks. This extension of the model will be 

discussed at the end of this chapter 

3.1 Derivation 

The general equilibrium pricing solution to the call option pricing problem 

incorporates the following assumptions: 

• All individuals can borrow or lend without restriction at the instantaneous 

riskless rate of interest, r, and that rate is constant through the life of option T. 

• The capital market is free from transaction cost (e.g., brokerage fees, 

transfer taxes, short selling and indivisibility constraints and tax differentials 

between dividend and capital gain income). 

• The stock pays no dividends during the option's time to expiration. 

• Stock price dynamics have the return dynamics as 
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— = adt + adz (3 1) 
S 

where a is the instantaneous expected rate of return, is the variance rate which is assumed 

to be a constant, dz is the standard diffusion process ( a Wiener process), having mean, and 

variance equal to zero , and one, respectively. In addition, it is assumed that the return 

dynamics on the option are descirbed by 

^ dt + dz (3.2) 

where and are the instantaneous expected rate of return and standard deviation of 

return on option, and C (S, t) is the option price. 

Taking the Brownian motion. Equation 3.1, as given, the change in option value can 

be found by applying Ito's lemma as follows: 

dC = C,dt+C.dS + ^C„dS' 

^ r> ^2 = I Q + SC,a +-S C„a^ |dt + SC.adz 

3C d^C 
where = — , and Comparing the above result to the assumed rate of 

return on option Equation 3.2, yields 

aC = C,+aSC.+-S^C„a' (3-3) 
I ' 2 

o,C = oSC. (3.4) 

Consider forming a portfolio by investing a fraction y in the option and 1 - 7 in the stock. 

The return on this portfolio is 

f = 

= [yWc + (1-Y)a]dt + [yo, + (1-Y)c]dz (3.5) 
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In order to have a riskless position on the portfolio, it is required that 

= vari{[YO, + (1-Y)<5]dz} = 0 (3.6) 

where vai; denotes variance conditioned on ( S(t), C(t) ). To avoid the possibility of 

arbitrage, the expected rate of return on the portfolio must be equal to the risk-free rate of 

interest, that is 

= E.{[Yae + a-Y)a]dt} = rdt (3.7) 

From Equations 3.6 and 3.7, substituting for 7 and rearranging terms gives 

a - r a - r 
(3.8) 

That is, the net rate of return per unit of risk must be the same for the two assets. 

Substituting in Equation 3.8 for and from Equations 3.3 and 3.4, and collecting terms 

gives the Black-Scholes partial differential equation for option pricing: 

+ rSC.-rC + Q = 0 . (3.9) 

Its boundary condition is determined by the specification of the assets. For the case of an 

option which can be exercise only at the expiration date T with exercise price K, the 

boundary condition is 

C(0,T) = 0, 

C(S,T) = max[0,ST-K]. 

Subject to the boundary condition, the solution is given by Black-Scholes (1973) and 

Merton (1973) as the discounted value of the expected payoff 

C(S,T) = e"'^E[max(ST-K,0)ls] 

= e-'^pST-K)n(ST |S)dST . (3.10) 
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where 11(8^ |S) is the probability density function of the terminal stock price conditional on 

its current value S. For constant r and a the stock price at T will be lognormally distributed 

with density function 

( ln(ST/S)-(r-0.5a')T' 
n(sTts) = 

1 , 

S t o V T '  r>/f 

where Z(.) is the unit normal density function. Substituting the density function into the 

option pricing function and evaluating the integral by using the fact that the truncated mean 

of a lognormally distributed random variable z with density function 

n(z) = 1 

yJlKOZ 
exp 

(lnz-|x)^ 

2a' 

IS E(z |z>a) = J zn(z)dz = exp "f: N 
|i-lna + a 

where N(.) is the cumulative distribution function of a standard normal random variable (.). 

Applying these two properties to Equation 3.10 yields 

C(S,T) = e-'T[e'TSN(di)-KN(d2)] 
or 

(3.11) c(s,T;K,r,o2) = SN(d,)-Ke-'''N(d2) 

where d, and d^ are defined as, 

d, = [ln(S/K) + (r + 0.5a')T].^^ 

d; = d, - oVt 

The numerical values of call prices at different exercise prices, K, time to expiration, T, and 

variance rates o', for $100 stock prices and 10 percent risk free rate of interest are shown in 

the Tables 3.1-3.6 
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Table 3.1: The Black-Scholes Option Values for 0.1 Standard Deviations 
at Various Maturities, Measuring Unit in One Year. 

K 

Q
 

II p
 

K 
MATURITY (T) 

K 

.125 .25 .375 .50 .625 .75 .875 
50 50.62 51.24 51.84 52.44 53.03 53.61 54.19 

60 40.75 41.48 42.21 42.93 43.64 44.34 45.03 
70 30.87 31.73 32.58 33,41 34.24 35.06 35.87 
80 20.99 21.98 22.95 23.90 24.85 25.78 26.70 
90 11.12 12.23 13.33 14.42 15.50 16.56 17.60 

100 2.11 3.45 4.67 5.85 6.99 8.12 9.22 
110 0.01 0.19 0.58 1.14 1.81 2.56 3.37 
120 0 0 0.02 0.09 0.24 0.47 0.80 
130 0 0 0 0 0.02 0.05 0.12 
140 0 0 0 0 0 0 0.01 
150 0 0 0 0 0 0 0 

Table 3.2: The Black-Scholes Option Values for 0.2 Standard Deviations 
at Various Maturities, Measuring Unit in One Year. 

K 

a = 0.2 

K 
MATURITY (T) 

K 

.125 .25 .375 .50 .625 .75 .875 
50 50.62 51.24 51.84 52.44 53.03 53.61 54.19 
60 40.75 41.48 42.21 42.93 43.64 44.34 45.03 
70 30.87 31.73 32.58 33.42 34.26 35.09 35.91 
80 21.00 21.99 23.01 24.03 25.03 26.04 27.02 
90 11.25 12.65 14.00 15.29 16.53 17.72 18.87 

100 3.47 5.30 6.86 8.28 9.61 10.88 12.09 
110 0.44 1.17 2.60 3.74 4.88 5.99 7.10 
120 0.02 0.27 0.77 1.42 2.17 2.98 3.83 
130 0 0.03 0.18 0.46 0.86 1.35 1.92 
140 0 0 0.03 0.13 0.31 0.56 0.90 
ISO 0 0 0.01 0.03 0.10 0.22 0.40 
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Table 3.3: The Black-Scholes Option Values for 0.3 Standard Deviations 
at Various Maturities, Measuring Unit in One Year. 

K 

a = 0.3 

K 
MATURITY (T) 

K 

.125 .25 .375 .50 .625 .75 .875 
SO 50.62 51.24 51.84 52.44 53.03 53.62 54.20 
60 40.75 41.48 42.21 42.95 43.68 44.42 45.15 
70 30.87 31.75 32.66 33.60 34.54 35.48 36.41 

80 21.04 22.25 23.51 24.76 25.98 27.17 28.32 
90 11.79 13.71 15.45 17.04 18.52 19.91 21.24 

100 4.85 7.22 9.17 10.91 12.50 13.98 15.39 
110 1.37 3.22 4.93 6.52 8.02 9.45 10.82 
120 0.27 1.23 2.41 3.67 4.92 6.17 7.40 
130 0.04 0.41 1.10 1.95 2.91 3.91 4.95 
140 0 0.12 0.46 1.00 1.66 2.42 3.25 
150 0 0.03 0.19 0.49 0.93 1.47 2.10 

Table 3.4: The Black-Scholes Option Values for 0.4 Standard Deviations 
at Various Maturities, Measuring Unit in One Year. 

K 

o = 0.4 

K 
MATURITY (T) 

K 

.125 .25 .375 .50 .625 .75 .875 
50 50.62 51.24 51.85 52.47 53.09 53.72 54.56 
60 40.75 41.50 42.29 43.12 43.96 44.81 45.67 

70 30.89 31.91 33.03 34.19 35.34 36.47 37.57 

80 21.24 22.88 24.52 26.08 27.56 28.97 30.31 
90 11.25 12.65 14.00 15.29 16.53 17.72 18.87 

100 6.25 9.16 11.52 13.58 15.45 17.17 18.79 
110 2.54 5.12 7.34 9.34 11.17 12.89 14.51 
120 0.86 2.66 4.49 6.25 7.94 9.55 11.10 
130 0.25 1.29 2.65 4.10 5.56 7.00 8.42 
140 0.06 0.60 1.52 2.64 3.84 5.09 6.36 

150 0.01 0.27 0.85 1.67 2.63 3.68 4.78 
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Table 3.5: The Black-Scholes Option Values for 0.5 Standard Deviations 
at Various Maturities, Measuring Unit in One Year. 

K 

o = 0.5 

K 
MATURITY (D 

K 

.125 .25 .375 .50 .625 .75 .875 
50 50.62 51.25 51.90 52.59 53.32 54.05 54.80 
60 40.75 41.59 42.55 43.56 44.60 45.63 46.65 
70 30.97 32.30 33.74 35.19 36.59 37.94 39.24 
80 21.66 23.83 25.87 27.76 29.51 31.14 32.69 
90 13.63 16.68 19.22 21.44 23.45 25.30 27.02 

100 7.64 11.11 13.87 16.26 18.41 20.38 22.21 
110 3.82 7.07 9.78 12.16 14.32 16.31 18.17 
120 1.70 4.33 6.75 8.48 11.05 13.00 14.83 
130 0.71 2.57 4.59 6.57 8.48 10.31 12.07 
140 0.27 1.48 3.08 4.77 6.48 8.17 9.82 
150 0.10 0.84 2.04 3.45 4.94 6.46 7.98 

Table 3.6: The Black-Scholes Option Values for 0.6 Standard Deviations 
at Various Maturities, Measuring Unit in One Year. 

K 

a = 0,6 

K 
MATURITY (T) 

K 

.125 .25 .375 .50 .625 .75 .875 
50 50.62 51.29 52.06 52.90 53.78 54.68 55.57 
60 40.78 41.82 43.03 44.30 45.56 46.80 48.00 
70 31.16 32.92 34.74 36.49 38.15 39.73 41.23 
80 22.26 24.99 27.44 29.64 31.66 33.52 35.26 
90 14.73 18.34 21.26 23.80 26.08 28.15 30.08 

100 9.03 13.05 16.22 18.94 21.36 23.57 25.61 
110 5.16 9.05 12.21 14.97 17.44 19.70 21.80 
120 2.76 6.14 9.11 11.77 14.20 16.44 18.55 
130 1.41 4.10 6.74 9.22 11.54 13.72 15.79 
140 0.68 2.70 4.96 7.20 9.37 11.46 13.45 
150 0.32 1.75 3.63 5.62 7.61 9.57 11.47 
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From Tables 3.1 through 3.6, all else equal, the higher the exercise price the lower 

the call price. This relationship can be investigated by considering calls with the same 

expiration date written on the same stock. The one with the higher exercise price cannot be 

more valuable than the one with lower exercise price, since the holder of the former, upon 

exercise, will have more cash left over. An increase in the interest rate or the expiration date 

will have the same effect to the option price. They will decrease the present value of the 

exercise price and thus, increase the call value. An increase in the variance rate of stock 

return will correspond to the extreme stock price movements. The chance that stock price 

levels will be greater than the exercise price will occur more often. And, since the value of 

option only counts for the positive value of the stock price less exercise price. The option 

value will be higher for the higher variance rate of return. Equation 3.9 can be written as 

«SC. + Ct + -a^S^ C„ ^ ^ _ SC.(a-r) 

C ^ ~ C 

Substituting from Equation 3.3 gives the relationship between the option's and the stock's 

expected rate of return 

c . - r  =  

To get the option's standard deviation, substitute from Equation 3.8 

sr 
a, = . (3.12) 

SC 
The term is the call option's price elasticity 

Ti = SQ ^ SN(d,) 
C SN(dJ-Ke"^N(dJ 

The call option's price elasticity is always greater than one, in other words, from the 

relationship given in Equation 3.11 the option is riskier in percentage terms than the stock. 
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The construction of the Black-Scholes option formula is based on the hedge portfolio 

was discussed earlier. The portfolio consists of investing a fraction 7 in the option and 1 - 7 

in the stock. This fraction, 7 which is the fractional investment in option, is the solution to 

equation 3.6, That is, 

o C 
G — C — SC. 

(113) 

The portfolio constructed in Equation 3.5 consists of selling (buying) 7 options and 

buying (selling) 1 - 7 stocks such that the portfolio position is riskless with, r, rate of return. 

On the other hand, the portfolio that duplicates the option, replicating portfolio, can be 

constructed in the same manner. It is the combination of stock and the riskless asset that 

provides the same return as the option. Solving Equation 3.5 gives, 

dC Y-ldS , 1 dP Y-ldS , 1 — = J h = -! + —rdt • 
C Y S Y P Y S Y 

Substituting the value of 7 from Equation 3.13 into the above equation and rearranging 

terms, 

dC = N(d,)dS + (C-SN(d,))rdt 

or 

dC-N(d,)dS = (C-N(d,)S)rdt (3.14) 

This is the way offered by Black-Scholes (1972) to adjust for changing risk of a 

position in the option. Since the stochastic process of option prices is generated from, and 

thus dependent on, the stochastic process of the underlying stock prices, Black and Scholes 

suggest offsetting the former uncertainty with the latter. This can be done by creating a 

neutral hedge position composed of buying (selling) one option and, at the same time, selling 
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(buying) a fraction of the underlying stock. This fraction, the hedge ratio, is determined in 

such a way as to cancel, over a very short time period, the risk of the option position with 

that of the equity position. The hedge ratio is, in fact, the partial derivative of the call option 

prices with respect to the stock price, N(d,). The left-hand side of the Equation 3.14 is the 

return on the portfolio, and the right-hand side is the riskless opportunity cost on the 

investment in the portfolio. 

Since the value of d, is equal to 

^ _ ln(S/K)-H (r+.5a')T 
• = Wf ' 

N(di) can take on a value from zero to one, and the number of shares of stock per option 

will change as a function of changes in the stock price S and the duration of the contract, T. 

As T goes to zero, d, will approach minus or plus infinity depending on whether the stock 

price is below or above the striking price. As at expiration of the contract the number of 

shares of stock per option will be either zero or one. Also if the stock price increases, a larger 

fraction of a share will be needed to rebalance the option position, and if the stock price 

decreases a smaller fraction of a share will be needed. 

3.2 Impact of a Dividend 

Strictly speaking, the Black-Scholes formula discussed previously only applies to 

European call options. Therefore, it can only be used for valuing American call options if 

early exercise is most unlikely. Such is not the case, however, when the underlying stock is 

expected to pay dividends during the life of the American call option. The reason is that the 

option holder is not compensated for any dilution of the stock's value due to cash dividend 

payments. As a consequence, early exercise of the option may pay if a large enough dividend 
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payment is expected soon enough. Fortunately, the Black-Scholes formula can be 

generalized to include the case of American call options on dividend-paying stocks. The 

extended model was originally developed by Richard Roll (1977), later simplified by Geske 

(1979), and finally perfected by Whaley (1981). 

Let the stock's dividend history be described by the following additional assumptions: 

• Da dividend of unknown size, will be paid to each shareholder with 

certainty. 

• t is the known time until the ex-dividend instant ( t < T ). At t, the stock 

has just gone ex-dividend. 

• a is the known decline in the stock price at the ex-dividend instant as a 

proportion of the dividend. 

• No other dividend will be paid before T has elapsed 

Roll (1977) has defined the stock price, S, as the total market price P, less the 

discounted escrowed dividend; i.e., for any r < t, = P, - and for t > t. As a 

consequence, for the stock that pays a certain dividend, D, at the ex-dividend instant, t (t < 

T), the stock price simultaneously falls by a known amount, a D, 

It is worthwhile to note that the stock price is assumed to drop by an amount a D 

rather than D at the ex-dividend instant. The coefficient, a, is the proportion of the dividend 

that the stock price may take by an amount other than the dividend amount. Occasionally, for 

example, it has been argued that the stock price is less than price appreciation. 

At the instant before the stock goes ex-dividend, if the American option holder 

exercises his option, he will receive S, + a D - K, where is the ex-dividend stock price. 

An instant later, if he allows it to remain unexercised, his option would be worth C (S,, T -1, 

K ), where C (.) is the European call option formula. There exists some finite ex-dividend 

stock price, S * , above which the American option will be exercised just before t if 
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S , +  a D - K  >  S ,  

Sj is the lower bound for F ((S,, T -1, K ). The stock price S * is the solution to 

C(S*,T-t,K) = S* +aD-K 

Actually, the function S,+ a D - K and C ( Sj, T -1, K ), do not need to have an intersection, 

if the income from early exercising the call is less than the lower boundary condition. In this 

situation, the value of the American call is C(S',T,K), where S' = S-aDe"*^, as pointed 

out by Whaley (1986). 

If S * exists, the value of an unprotected American call option is determined by the 

combination of 

1) a long position of one European call option with exercise price K and 

maturity T; 

2) a long position of one European call option with exercise price S * and 

maturity t - e ; and 

3) a short position in one Europe call on the option described by (1) with 

e x e r c i s e  p r i c e  S  *  +  a  D  -  K  a n d  m a t u r i t y  t - e .  

The above portfolio was constructed by Whaley (1981) using the duplication technique 

proposed by Roll (1977). If the ex-dividend stock price is above S *, options (2), and (3) are 

exercised providing a net cash flow of S, + a D - K . Thus, the income contingencies of this 

portfolio at the instant after the ex-dividend date are equal to those posed by the American 

call option which can be summarized in Table 3.7. 

Under the assumption that the stock price net of the escrowed dividend, S, is 

described by the stochastic differential equation 

— = ndt + adz 
S 
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Table 3.7 Cash Flow of Compound Options 

For St > Sj * For St < St * 

Cash receipts are Portfolio positions are 
From (1) 0 From (1) Open 

(2) S,-S/ (2) Expired 

(3) S t *  + a D - K  (3) Expired 

Total St + OtD — K in cash Total Option on S until T 
with exercise price K 

the Black-Scholes (1973) option pricing fomiula can be applied to options (1) and (2) of the 

portfolio. Let Nj(A) be the univariate cumulative normal density function with upper 

integral limit A and N2(A,B;p) be the bivariate cumulative normal density function with 

upper integral limits A and B and correlation coefficient p. The Geske (1979)'s compound 

option pricing formula can be applied to option (3). The value of an American call option on 

a stock with a single dividend paid during the life of the option is 

A(S,T,K) = S[N,(B,) + N2(A„-B,;-Vt7f] 

- Ke-'^[N,(B2)e'(^") + B,', - VTTT] 

+ aDe-'^N,(B2) 

where 
ln(S/K) + (r + .5a')T 

' " aVT 

A; = A, - G Vf 

„ _ ln(S/S*) + (r+.5a')T 

^ 
Bg = B, - oVt 
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CHAPTER 4. A SURVEY OF EMPIRICAL TESTS 

The amount of work devoted to empirical testing of call option pricing is rather 

impressive. While various approaches have been applied to different data sets and time 

periods, empirical research has met strong obstacles. The tests in the area of option pricing 

are not the most efficient, accurate, and conclusive. However, they have paved the way to 

better understanding not only of the behavior of option prices but also of stock prices. 

The empirical research on options has revealed so many aspects. First of all, the 

studies helped to demonstrate the importance of the data accuracy, showing that even slightly 

inaccurate data can substantially affect results. Second, the empirical research on stock 

markets may have suffered from many problems that were ignored in the past. For example, 

the question of the stationary of the distribution of stock-price changes as well as the 

problems associated with the market microstructure have been reexamined in the option 

literature. Third, while the tests in almost any empirical study are joint, this issue has been 

stressed in the option pricing area more than in any other area in finance. 

Various approaches for testing the validity of an option-pricing model will be 

discussed in the next section of this chapter. The main concern in testing option model based 

on the accuracy of the data collection which may reflect the efficiency of option market. The 

markets in which trading in related assets takes place simultaneously and quoted prices 

reflect this simultaneity are referred to as synchronous markets. Synchronization, therefore, 

has two facets: trading synchronization and data synchronization. The former stands for 

parallel trading in two related securities. Trading synchronization is not sufficient for 

proving market synchronization since data recording may be nonsynchronized. The 
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technology for registration of trades must be such that data accurately present timing of the 

transaction and the time the information is made available to market participants. If data on a 

class of options and the underlying stocks are used and the price quotes are not taken at the 

same time, based on parallel trading, the markets will be nonsynchronous. 

4.1 Testing Model Validity 

Most of the discussion will concern testing the validity of the Black-Scholes model 

for pricing of call options. The following sections deal with different approaches to testing 

model validity. A survey of the literature reveals four major approaches for testing model's 

validity. These approaches will be outlined briefly in this section, while empirical results will 

be described later. 

The first approach, initially suggested by Black-Scholes (1972), is based on creating 

neutral hedge positions, and testing the behavior of the returns from the investment. The idea 

is to create, with 

options and their underlying stocks, a position that, if the model is correct, should be riskless. 

By doing so, the problem of risk-adjustment for investment in option is eliminated. 

The second approach is based on imputing the standard deviations from actual option 

prices by using a pricing model. It is assumed that all parameters except for the risk measure 

of the underlying stock, are known and that markets are efficient and synchronous. By 

equating the actual price to the model price, the standard deviation can be imputed as the 

only unknown in the equation. The behavior of the implied standard deviation is then 

investigated to determine the validity of the assumed model. 

The third approach is based on direct comparison of the model prices to actual prices. 

According to this approach, the estimated parameters of the model and the actual 
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observations of stock prices are placed in the pricing model to generate expected option 

prices. In the second stage the model prices are compared to the actual, realized option 

prices. The tests are intended to show whether model prices are unbiased estimators of actual 

prices or whether there are consistent deviations that can be exploited for better prediction or 

for making above-normal profits L The major disadvantage of this approach is that the 

statistical characteristics of the time series of model prices or the deviations between them 

and actual prices are nonstationary. The risk characteristics change with time to maturity and 

with changes in stock prices. 

The fourth approach for testing pricing models is by means of simulations of 

deviations from the basic assumptions of the models. According to this approach the 

sensitivity of the model prices to empirical deviations from the assumptions is tested. 

Actually, simulations can not be used for a direct test of model validity; they should be used 

for examining the robustness of the given model to varying conditions. 

The majority of empirical papers use the first, second or third approaches, and most 

of the discussion that follows will be devoted to them. 

4.2 Risk-Adjusted Returns 

Most of the discussions that will be explored in the next section, ignore the risk 

associated with an option position. For instance, the stochastic nature of the deviation of the 

model prices from the actual prices, C° - C", in MacBeth and Merville's study may change 

from day to day and across the underlying stocks. Moreover, the uncertainty is also a 

function of the extent to which the option is in-the-money. Hence the appropriateness of 

using a simple regression technique may be questionable. 

'For a complete riskless strategy, above normal profits mean profits in excess of the risk-free rate of interest. 
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It is one of the basic principles of modem finance theory that investment evaluation 

should include consideration of the risk associated with the return on the investment. To find 

the measures of risk is much more complicated, especially when contingent assets are 

considered. Since the distribution of the rates of return from an investment in an option is not 

expected to be symmetrical and stationary over time, simple measures of risk, such as 

standard deviation of the distribution may not be suitable. 

In their empirical paper, Black-Scholes (1972) offer a way to adjust the changing risk 

of a position in an option. Since the stochastic process of option prices is generated from, 

and thus dependent on, the stochastic process of the underlying stock prices, Black-Scholes 

suggest offsetting the former uncertainty with the latter. This can be done by creating a 

neutral hedge position composed of buying (selling) one option and, at the same time, selling 

(buying) a fraction of the underlying stock. This fraction, the hedge ratio, is determined in 

such a way as to cancel, over a very short time period, the risk of the option position with 

that of the equity position. That fraction is, in fact, the partial derivative of the call option 

price with respect to the stock price, ôC / 3S, then for a very short time interval, At, the 

investment in an option (on one share), while short selling a fraction dC / 3S of the share, 

should be riskless. It is therefore expected that for small At, 

where the A is the change operator. The left-hand side of the above expression is the return 

on the portfolio, and the right-hand side is riskless opportunity cost on the investment in the 

portfolio. 

The procedure for creating the hedge position on day t is : 

• compute the model price C" and compare it with the actual price C'. 

• If C" < C' the option is considered to be overvalued; it should be sold and 
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9C / dS units of the underlying share should be bought. 

• If C" > Cr the option is considered to be undervalued; the action that should 

be taken, is to buy the call and sell short dC / dS units of share. 

• The hedge position will be held over a time interval, and assumed to be liquidate 

on t+L 

The ex-post hedge return based on the Black-Scholes is thus, 

R.,.. = (C. - c ;)-N(d„)(s„,-s,) 

for the undervalued call option, and 

Rw., = N(d,.)(s,„-s,)-(c;„-cr) 

for overvalued call options. The hedge return minus the opportunity cost on the investment 

will give the excess-dollar return for the hedged position. 

Black-Scholes (1972) calculated the excess-dollar return for options traded during the 

period May 1966 to July 1969 from the diaries of an option broker who had recorded all 

option contracts written for his customers. The diaries contained the striking price, the 

expiration date, the written date, the premiums received, the actual date of exercise, and the 

number of contracts written. By comparing their model prices with the actual ones at the 

issuing date of an option, they could classify options into two groups-those the market 

overvalued compared with the model, ^d those it undervalued. The initial position in the 

underlying stock was adjusted on a dairy basis to maintain the neutral hedge. On theoretical 

grounds, they expected the excess return to have zero systematic risk. 

The major finding of the Black-Scholes' study was that by using past data to estimate 

the variance, the model overpriced options on high-variance securities and underpriced 

options on low-variance securities. This may indicate that traders underestimated variances 

for volatile stocks and overestimated them for stocks with low volatility. By also using ex-
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ante estimates of the variance based on data for life of the option they concluded that "if the 

model has an accurate estimate of the variance it works very well" (p. 416). In addition they 

observed nonstationary in the variance, the results may indicate market inefficiency. But, the 

profits from selling options on low-variance securities and buying options on high-variance 

securities completely disappeared when transaction costs were considered. 

A secondary market in options was virtually nonexist in the over-the-counter market. 

Thus, while stock prices in Black-Scholes study were actual daily closing prices, the option 

prices they used in their tests were imputed for the model. As a result, their average excess-

hedge return mainly reflected the difference between the option's actual price and the model 

price on the initial day. Because model prices instead of actual prices were used after the 

initial day, the relative changes in the underlying stock quite closely matched those imputed 

for the option during life of the option, and the excess-dollar return for these days was very 

close to zero. 

In Galai (1977), the option positions are adjusted on a daily basis, and actual option 

prices are used. The data employed are the daily closing prices of all options traded during 

the first months of the CBOE, from 26 April 1973 to 30 November 1973. The total number 

of observations on option prices was 16,327. The ex-post test was performed under the 

assumption that trading at the closing price on day t, based on a trading rule that had been 

decided by using the same price, was possible. 

The average hedge dollar return over 202 option classes, traded during the initial 

period of the CBOE, was approximately $9.80 per option day. For 71 options out of 202, the 

average of the time-series hedge return was significantly different from zero (at 5 percent). 

The results are thus consistent with the results shown for the boundary conditions in Galai 

(1978); the ex-post hedge strategy effectively located deviations from the model price, 

generating substantial 'book profit'. During the sample period the average hedge returns were 
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Stable across maturities. Regressing the hedge returns on the market index yield estimates of 

beta. There were in most cases, not significantly different from zero, while the estimates of 

the intercept ( that is, the return adjusted for risk ) were all significant (at 1 percent). The 

results were quite robust with respect to various estimates of the riskless interest rates and the 

variance of the rate of return. The latter was estimated in different ways from time series of 

past rates of return. By imposing a 1-percent transaction cost on changing the daily 

investment, almost all the hedge returns were eliminated. 

The effect of dividend payment on the valuation of CBOE options was tested by 

classifying stocks in four groups according to their dividend yields and repeating the 

regression analysis for each group. The results clearly indicate that the ability of the 

unadjusted Black-Scholes model to locate over- or undervalued options declined as the 

dividend yield increased. The model performed better when applied to situations in which 

the basic assumptions of the model were better maintained, such as without-dividend 

payment. This conclusion was supported by the results obtained when the tests were limited 

to the trading days after the last expected ex-dividend day for any option. Finally, a simple 

adjustment for dividends was introduced to the Black-Scholes model by subtracting the 

present value of the expected dividends during the life of the option from the price of the 

underlying stock^-and using this adjusted price in the model. The hedge returns were 

substantially higher, by 50 percent on the average, after introducing the dividend adjustment. 

^Then the value of the option on a stock with current market price of S for which dividend is expected to 

be paid on day t; will be approximately 

where d, = {ln[(s - / K]  + ( r  +  0.5A')t} / aVt. 
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The dividend correction increased the ability of the hedging strategy to locate profitable 

opportunities. 

Galai's study emphasized that to test market efficiency, an ex-ante test simulating the 

trading opportunities for the trader should be performed. The meaning of efficiency in 

finance literature is not in terms of Pareto optimality which, in the context of the option 

market, is the question of whether creating a new market place for trading options increases 

the welfare of society. In stead, a market will be termed efficient if no trader can consistently 

make above normal, risk-adjusted profits on an after-transaction cost and after-tax basis. The 

procedure used was similar to the one used in the ex-post tests, except that in the ex-ante test 

the execution of trading is delayed by one trading day. On day t it is decided whether the 

option is over or undervalued and the hedge ratio is calculated; the hedge is established on 

day t+1 and liquidated on t+2. The ex-ante hedge return is 

Rh.t+2 = (c?+2 ~ Q+i) - N(d,t)(S,+2 - St+i) 

if C" < Cr ; and 

Rh...2 = N(dJ(S.,2-S,.)-(Q,2-q,,) 

if C' > C" . Basing the analysis on the assumption that the trader has to wait (at least) 24 

hours before he can execute his desired transactions, the average of the hedge returns fell 

from $9.80 to $5.00 per option per day for the ex-ante test. In addition, the dispersion of the 

returns increased substantially, and, hence, the number of averages that are significantly 

different from zero declined with the dividend yield from $7.30 per contract for the low-

dividend-yield portfolio to $2.40 for high-dividend yield portfolio. 

The evidence of the ex-ante test shows that profit opportunities might still have 

existed in the CBOE for the market to exploit. These profits were lower and perhaps riskier 
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than those that seemed possible at first glance. Profits may be completely eliminated if a 

spreading technique is considered as suggested by Phillips and Smith (1980). 

Market makers, especially, on the CBOE mainly use the spreading-option strategy 

which consists of a long position in one option and a short position in another, usually on the 

same underlying stock. Spreading can be performed on striking prices by buying and selling 

options that have the same expiration date but differ only in their striking prices. Also, 

spreading can be done on expiration date by buying and selling options that have the same 

striking price but differ in their maturities. Mixture of the two strategies can be constructed 

and are carried out on the exchange. 

Let N(dij) be the hedge ratio for hedging option j with its underlying stock and N(dn.) 

be the hedge ratio for option k written on the same underlying security. Another way to 

describe these relationships is that an expected riskless position can therefore be created by 

buying (selling) i / N(dij) units of j and selling (buying) i / N(dii,) units of k. Equivalently, the 

riskless position can be achieved by buying (selling) one contract of option j and selling 

(buying) N(d,j) / N(d,k) contracts of option k. 

To determine whether j is over- or undervalued relative to k, Galai suggests 

comparing the ratio of the model prices C" / C", with the ratio of the actual prices I Cl^ . 

If C" / C", > C", / Qt then the riskless position can be accomplished by buying option j and 

sell k because option j is underpriced relative to k, otherwise selling j and buying k. 

If j is undervalued relative to k, the investment in day t will be 

and the return in t+1, R,., is, 

^t+i c P N(d,,,) 
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where all the prices above are actual premiums. For the case in which j is overvalued relative 

to k, the return is 

R... = 

Galai's study shows that the average spreading return for all options was $8.40 for ex-post 

spreading for July 1973 maturity against October 1973 maturity, and only $4.80 for the ex-

ante^ strategy. 

While the Black-Scholes model assumes continuous trading, in practice trading is 

discrete, with the exchanges open for business for a limited time period each day. Galai 

(1983) studies the effect of this deviation from the basic assumption of the Black-Scholes 

model. In his article the profits from the hedging strategies with options are further analyzed. 

He shows that the results obtained for the ex-post and ex-ante hedge returns are not due to 

the discreteness of trading. The major component in the hedge return is the change in the 

deviation between the model and the market prices, while the opportunity cost and the 

discrete daily adjustment are marginal, 

Chiras and Manaster (1978) calculate the spread returns for positions that indicate 

high profit potential. They use the Black-Scholes model with an adjustment for the expected 

dividends, and the weighted implied standard deviation'^ (WISD) as an estimator of the 

^ if j was undervalued relative to k, the return on day t+2 when the position is liquidated is 

R..Î = 

and if j was overvalued, it is 

Rt+2 = ! ((^kt+2 - Ck,+i) -

They use the price elasticity of an option with respect to its implied standard deviation as the weight. 
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Standard deviation. A spread position is established for those options that deviate by 10 

percent from the market price; that is, 

> 10 percent. 
C 

The value of each option in the portfolio is determined by its hedge ratio. All option 

positions are maintained over one month. During twenty-two holding periods, from June 

1973 to April 1975, 118 positions were formed and 93 of them were found to show paper 

profits. The average gain per position was $9.96 per month. 

Chiras and Manaster claim that the results indicate market efficiency. Moreover, they 

are careful to note the ex-post nature of their tests and the potential problem of 

nonsimultaneity of option prices. Bookstaber (1981) used the data of Chiras and Manaster to 

check the effects of potential nonsimultaneity in their data. His conclusion is that there is 

strong support of the concern "that the observed profits were due to the noncontemporaneous 

data, and are not achievable in practice" (p. 155). In addition, Phillips and Smith (1980) 

show that by introducing transaction costs, especially those contained in the bid-ask spread, 

the profits of Chiras and Manaster are eliminated. 

The bid-ask spread is the difference between the highest quote to buy and the lowest 

offer to sell the registered security in the market. These recorded offers come from two 

sources: (1) quotes from market makers/specialists, and (2) customer's limit orders recorded 

on the exchange's limit order book. The bid-ask spread contains implicit trading costs, 

especially, information costs in the option markets. Phillips and Smith observed that the 

average spread for stock is less than 1 percent, while the average spread for call options is 30 

percent and for puts 15 percent. The average dollar spreads for stocks and options are closer, 

between $16 and $20. 
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In Galai's ex-ante hedging test, he establishes the hedge at closing prices from the 

next day's trading. By adjusting prices daily, Galai's ex-ante hedging test generates an 

abnormal return of $5 per hedge per day before transaction costs. However, as reported by 

Phillips and Smith, the average bid-ask spread for a call contract is $16 and for a round lot of 

stock is $20; thus the estimated bid-ask spread for the call alone more than eliminates Galai's 

$5 average profit. Moreover, Galai's spreading strategy, where call options which differ only 

in expiration dates are simultaneously bought and sold by buying undervalued and writing 

overvalued calls, produces ex-ante average of $4 which will be offset by estimated bid-ask 

spread of $16. 

Blomeyer and Klemkosky (1982) test the validity of Roll's model for pricing the 

unprotected call option. They investigate to what extent the observed deviations of the 

Black-Scholes model prices from actual prices are due to the fact that the model ignores the 

early exercise opportunity of the unprotected American call. The data used in the study are 

transactions data for eighteen stocks and their CBOE options for one trading day per month 

during the period July 1977 to June 1978. Blomeyer and Klemkosky follow Galai's testing 

procedure, repeating the ex-post performance test for both the Black-Scholes and Roll 

models and comparing the average percentage-excess hedge returns generated by each 

model. The hedge positions are adjusted for each new option transaction price, and the 

returns are calculated over the intervals between successive transactions. The average 

reported for each underlying stock and for each trading day are also aggregated for three 

groups according to their dividend yields. 

It is expected that since the Roll model allows for the early exercise of CBOE 

options, it should outperform the Black-Scholes model for options written on high-dividend-

yield stocks. The results do not support the expectations, according to Blomeyer and 
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Klemkosky. They claim that the ex-post results suggest that the Roll model is not superior to 

the Black-Scholes model in its ability to identify overvalued and undervalued call options. 

While no significant differences are found between the results based on the Roll 

model and those based on the Black-Scholes model, the ex-post excess-hedge returns are 

significantly different from zero 

(at 5-percent significance level) for both models over most trading days and underlying 

securities. To test for market efficiency an ex-ante hedging strategy is constructed : a 

position is established based on the prices of the option and the stock approximately five to 

fifteen minutes after a substantial deviation between the model and the market prices is 

observed. The position is held over one month and then is assumed to be liquidated. The 

results are also adjusted for transaction costs^ for relatively efficient traders as suggested by 

Phillips and Smith (1980). On a before-transaction-cost and opportunity-cost basis they find 

that the two models produce significant positive returns, but these average profits disappear 

after the adjustments are made. From average excess monthly returns over all days and 

securities of 1.2 to 1.6 percent, the excess return fell to -1.1 to -1.0 percent after adjusting for 

transaction costs. The results thus support market efficiency. Blomeyer and Klemkosky also 

conclude that the Black-Scholes model is an acceptable pricing alternative to the 

mathematically complex Roll model. 

However, it should be noted that Blomeyer and Klemkosky use the average 

percentage-excess returns, which they get by dividing the excess-dollar return by the 

absolute investment, C - 3C / 3S. One problem may arise due to the size the investment can 

take; in some cases it may get very close to zero and the rate of return will be very high. One 

extreme value can significantly affect the average and its standard deviation. Another 

problem may result from using the weighted implied standard deviation (WISD) based on 

^ Blomeyer and Klemkosky use one-half of the mean bid-ask spread as the correct transactions cost since the 
trading rule use in their study does not dictate that transactions occur on the wrong side of the spread. 
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the Black-Scholes model. If the Roll model is correct, the Black-Scholes model prices will 

give an underestimation of the American call prices, and therefore, the Black-Scholes 

implied standard deviation will be overestimated. Using these WISD's in the Roll model will 

bias the prices upward. This problem will be especially serious for the high-dividend-yield 

stocks. 

4.3 Implied Standard Deviation 

One of the basic assumptions of the Black-Scholes model is that the standard 

deviation of the stock's rate of return is known and constant. If the model is correct and 

option, and stock markets are efficient and synchronous, by equating the model price to the 

actual market price the standard deviation implied by the option price can be imputed. It is 

expected, therefore, that the implied standard deviation (ISD) be stationary over time, across 

maturities and striking prices. The ISD is also expected, given the assumptions of the model, 

to be equal to the time-series standard deviation. Deviations from expectations may be due to 

markets' inefficiency or lack of synchronization among related markets, or to the model 

being misspecfied. 

The estimation of the standard deviation of the stock's rate of return by the ISD was 

initially suggested by Latane and Rendleman (1976). They derive standard deviations of 

continuous price relative returns which are implied in actual call option prices on the 

assumption that investors behave as if they price options according to the Black-Scholes 

model. The standard deviation implied by any given option price can be found by using 

numerical search to have a close approximation. The procedure is to equate the right-hand 

side of the Black-Scholes equation within ± $0,001 of the actual call price for a sample of 

observed call option prices. 
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Latane and Rendleman's data set contain weekly closing option and stock prices on 

twenty-four firms during the period October 5, 1973 to June 28, 1974. The weekly hedge 

returns are calculated separately for over- and under-valued options under various criteria in 

selecting options and determining the hedge-ratios. The criteria are the individual option's 

ISD the underlying stock's WISD, and the ex-post time-series standard deviation. The 

strategy, based upon the historical series of rates of return, is considered to be naive strategy 

against which the returns generated from the use of the WISDs. Under the assumption that 

the WISD is the proper measure of the standard deviation, Latane and Rendleman expect 

absolute higher returns for strategies employing WISDs. They find all the portfolios 

employing WISDs to produce significant (at 5 percent) mean excess returns, which are also 

consistently higher than those using the ex-post standard deviations. Latane and Rendleman 

conclude that "the WISD based upon the Black-Scholes model is useful, not only in 

determining proper hedge position, but also in identifying relative over- and undervalued 

options" (p. 375). 

From comparing the WISDs to the time series standard deviations they conclude that 

options were generally overpriced in terms of the Black-Scholes model during the sample 

period. While the WISDs for a given stock are not perfectly stable, they find a strong 

tendency for the cross-section estimators to move together over time. This led Latane and 

Rendleman to conclude that while the model can be used effectively to determine whether 

individual options are properly priced, "the model may not capture the process determining 

option prices in the actual market" (p. 375). 

Schmalensee and Trippi (1978) assume the volatility of the Black-Scholes model and 

impute the standard deviation from weekly observations over the period April 1974 to May 

1975, for six weekly traded stocks and their options. Based on previous studies that claimed 

that the Black-Scholes model worked poorly for deep-in-the-money and deep-out-of-the-
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money options, they eliminate these options from their sample. The purpose of their study is 

to investigate "the determinant of changes over time in the market's collective expectations 

of common stock volatility" (p. 130). 

Schmalensee and Trippi use an arithmetic average of ISDs, based on closing prices, 

as an estimator of the standard deviation and check the behavior of the changes in the 

average over time. They find the changes in volatility to contain nonwhite-noise elements, 

which would indicate market inefficiency, given the validity of the Black-Scholes model. 

But, because actual volatilities change over time, as do the average ISDs, the Black-Scholes 

model may be inappropriate. 

Similar to the results of Latane and Rendleman, they also find some market-based 

effects that influenced the change in volatility across stocks. Surprisingly, a weak 

relationship is found between changes in the average ISDs and the ex-post time-series 

standard deviations. Also surprising is the strong impact of the direction of change of stock 

prices on the changes in the ISDs. These results are not consistent with the Black-Scholes 

model framework, nevertheless, the Black-Scholes model can be useful in predicting such 

ex-ante changes. 

Beckers (1980) notes that there is a basic inconsistency in using the model to obtain 

predictions of a presumably nonstationary variance. However, the results of Latane and 

Rendleman and Schmalensee and Trippi indicate that the Black-Scholes model is still 

valuable in predicting future volatilities. It may be the case that the model is not very 

sensitive to violations of the nonstationary assumption. Beckers extends the above studies by 

considering alternative weighting schemes for the volatility estimator and by using a 

dividend-adjusted model. For a sample of CBOE options during the period 13 October 1975 

to 23 January 1976, Beckers finds the ISD derived from an at-the-money option to be a 

better predictor of the actual time-series standard deviation over the life of the option than a 
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weighted ISD. He also finds the ISDs to be extremely volatile over time and suggests using 

an intertemporal arithmetic average. While the instability of the ISD may indicate market 

inefficiency, Beckers attributed it to the trading mechanism and especially to the lack of 

market synchronization. Expanding the sample over the period May 1975 to July 1977 and 

using five-day arithmetic averages of ISDs, Beckers reconfirms his earlier findings. In the 

regression analysis he finds that past time-series standard deviations add to the explanation 

of the ex-ante time series standard deviation above and beyond what is explained by the ISD. 

This, again, may indicate market inefficiency in using available data; it may also indicate 

model misspecification or data problems. Some support to the latter is received from 

analyzing a sample of transaction data that show that closing price may seriously distort the 

ISD calculations. 

While all the estimated ISDs are point estimation usually based on closing prices for 

shares and options, little is known about their distribution properties. Brenner and Galai 

(1981) examine some properties of the ISDs based on transactions data on five stocks for 

ninety-eight trading days starting from 3 June 1977 to 21 October 1977. It appears that there 

are significant deviations of the ISDs based on the last transaction for the day (LISD) from 

the daily average ISD (AISD). Longer maturity options exhibited a tendency to higher 

AISDs than short maturities, which implies that options with a long life were overpriced 

relative to short maturity options. Moreover, the distributions of AISDs over time were not 

stationary. There were also significant differences of AISDs across striking prices. Thus, the 

results are consistent with findings of other researchers, and lead to the rejection of the joint 

hypotheses that the Black-Scholes model is valid-that the stocks and options markets are 

efficient and synchronous, and that the estimation procedure are correct. 

Black-Scholes' most exacting assumption disallows income distributions on the 

underlying security. However, less than five percent of the options listed on the CBOE are 
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written on non-dividend-paying stocks. A simple approximation for the value of the 

American call is the value of a European call, F(S,T,K), where S is the stock price net of the 

present value of the escrewed dividend payment^, = I* - for r < t, and 

for t < r < T. This approximation ignores a second dividend-induced effect in that 

it presumes that the call will not be exercise prior to expiration. To compensate for this 

possibility Black (1975) suggests an approximate value equal to the higher of the values of a 

European call where the stock price net of the present value of the escrewed dividend is 

substituted for the stock price and a European call where the time to ex-dividend is 

substituted for the time to expiration, that is 

max[C(S,T,K),C(P,t,K)] 

The probability of early exercise is assumed to be zero and one for the first and second 

option, respectively, in the maximum operator. 

Whaley (1982) examines the pricing performance of the three methods for valuing 

American call options on dividend-paying stocks. The methods include: (1) the simple 

approximation obtained by substituting the stock price net of the present value of the 

escrewed dividend into the Black-Scholes formula, (2) the Black approximation obtained by 

taking the higher of the Black-Scholes formula value using stock price net of the present 

value of the escrewed dividend and the Black-Scholes formula value using the time to ex-

dividend as the time to expiration variable, and (3) the correctly specified equation for the 

American call option on a stock with a known dividend. 

The data employed in his study consist of weekly closing price observations for all 

CBOE call options written on 91 dividend-paying stocks during the 160 week period January 

17, 1975 through February 3, 1978. The prices of stocks, options and Treasury Bills were 

^ Assuming that at the ex-dividend instant, t ( t < T ), the stock pays a certain dividend, D, and the stock 
simultaneously falls by a known amount, a D. 
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compiled from the Wall Street Journal. According to the American call option model 

specification, the option's underlying stock must have exactly one dividend paid during the 

life of that option. Thus, options with expiration dates before the stock's next ex-dividend 

date and options with time to expiration including more than one ex-dividend date were 

eliminated. 

Unlike the previous empirical studies, which compute a single volatility estimate on 

the basis of all the options written on a stock at a particular point in time, Whaley uses only 

those options which share a common maturity. Patell and Wolfson (1979) suggest and 

demonstrate empirically that the standard deviation implied by the price of a longer-lived 

option written on a stock is greater than the standard deviation implied by the price of a 

shorter-lived option if there is an anticipated information event between the expirations of 

the two options. Eventhough, previous researchers employ weighted implied standard 

deviations as predictors for future return volatilities, the estimates of standard deviations in 

his study are determined by minimizing the sum of squared deviations of the observed call 

prices from the model's prices. This criterion allows call prices to provide an implicit 

weighting scheme that yield an estimate of standard deviation which has as little prediction 

error as is possible. 

Comparing the relative prediction error of the American call option to the other 

simple approximation methods, Whaley finds that it is not only markedly lower than those of 

the alternative models, but also not systematically related to : (I) the degree to which the 

option is in-the-money or out-of-the-money, (2) the probability of early exercise, (3) the 

option's remaining time to expiration, and (4) the stock's dividend yield. However, the 

American call formula does not eliminate, although it reduces, the association between 

prediction error and the standard deviation of stock return. All models tend to overprice 
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options on high-risk stocks and to underprice options on low-risk stocks. This phenomenon 

is consistent with both Black and Scholes and MacBeth and Merville's findings. 

Barone-Adesi and Whaley (1986) estimate the value of the ex-dividend coefficient a 

implicitly by allowing observed call option transaction prices to provide the best estimate of 

the relative stock price decline. To estimate the parameters, a and, a, call option transaction 

prices are regressed on the Roll model prices by using maximum likelihood procedure. The 

data used in their study consist of transaction information for all CBOE call options traded 

during the first three months of the calendar years 1978 and 1979. Their test results indicate 

that the expected relative stock price decline is not meaningfully different from one. 

In general, the estimates of option prices using variance estimates are biased because 

the Black-Scholes formula is non-linear in the variance, and unbiasedness is not preserved 

under a non-linear transformation. The bias can be reduced by selecting a larger sample size 

in order to lower the variance of the variance estimate. However, there is growing empirical 

evidence, for example, Christie (1982), and Schwert (1989), that the variance is not constant 

over time. As the result, the longer is the time series of observations used to estimate the 

variance rate, the more biased the variance estimate may be. 

Because of the non-linearity of the Black-Scholes formula, it is not possible to insert 

the estimated variance in the formula to get unbiased estimates of the option price. The non-

linearity exists from the standard normal cumulative distribution function. Butler and 

Schachter (1986) circumvent this problem by using Taylor series expansion to express the 

standard normal cumulative distribution function around zero to arbitrary accuracy. 

Furthermore, they derive the unbiased estimator of the series of the odd powers of the 

standard deviation and then substitute them into the expression of the standard normal 

cumulative distribution function. 
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Finally, Butler and Schachter compare the performance of the unbiased estimator and 

the Black-Scholes option price using an unbiased variance estimate. Basing on the 

simulations, the unbiased estimator performs better on the whole. The bias in the usual 

estimator is many orders of magnitude greater than the unbiased estimator. On average, for a 

contract to purchase 100 shares of a stock with a price of $50, the bias is on the order of 

$0.33 for the usual estimator whereas the maximum bias is less than 10*8 for the unbiased 

estimator. The absolute bias is greatest for at-the-money 

options, with an average bias of $0.67 on a similar contract. 

However, the biased estimator does not solve all problems related to the 

determination of Black-Scholes option prices. In order to compare the performance of the 

Black-Scholes price and the unbiased 

estimator of the Black-Scholes model price, an empirical test is necessary. Furthermore, the 

unbiased estimator does not address the problem with non-stationary in the variance, model 

misspecification and dividend effects. 

4.4 Direct Comparisons 

The first paper that will be introduced in this section is a descriptive analysis of how 

market prices of call options compare to prices predicted by the Black-Scholes option pricing 

model. Actually, Black (1975) has stated that market prices of call options tend to differ in 

certain systematic ways from the values given by the Black-Scholes model for options with 

less than three months to expiration and for options that are either deep in or deep out of the 

money. Based on the previous statement, MacBeth and Merville (1979) inspect market and 

Black-Scholes call prices under the assumption that the Black-Scholes model correctly prices 

at the money options with at least ninety days to expiration. 
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The basic method of their analysis is to numerically solve the Black-Scholes option 

prices for the unobservable quantity, the variance rate, The values of implied 

variance rates, can be found by substituting the observed market price into the Black-Scholes 

formula and numerically solve for the 

implied variance rates. 

Their sample consists of daily closing prices of all call options traded on the Chicago 

Board of Trade Options Exchange for American Telephone and Telegraph (ATT), Avon 

products (AVON), Eastman Kodak (ETKD), Exxon, International Business Machines 

(IBM), and Xerox from December 31, 1975 to December 31, 1976. Option prices and prices 

of the underlying stocks were taken from the Wall Street Journal. The riskless return was 

imputed from bid and ask yields reported in the Wall Street Journal for United States 

Treasury Bills by selecting a Treasury Bill that expired just beyond the expiration date of the 

option and then followed the yield on that Bill through time. Dividend information came 

from Standard and Poors Stock Record. They have examined their data for the period 

between ninety and one hundred days prior to expiration and find no evidence of an early 

exercise effect. 

In their study, MacBeth and Merville found that on any given day different market 

prices of options written on the same underlying stock yield different values of the implied 

variance rates and these implied variance rates for the same option changed through time. 

Furthermore, their empirical results show that the implied variance rates decline as the 

exercise price increases. 

As mentioned earlier that analysis is based on the assumption that the Black-Scholes 

model correctly prices at the money options with at least ninety days to expiration. It follows 

from this assumption that the at the money implied variance rate is the proper or 'true' 

variance rate. From this stand point, the Black-Scholes model must yield call option prices 
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which exceed observed market prices for option out of the money and call option prices 

which are less than the observed market prices for options in the money because the implied 

values of a decline as the exercise price increase. 

In order to investigate the behavior of the Black-Scholes model prices and observed 

market prices, the implied variance rate for at the money option needs to be determined. 

MacBeth and Merville estimated the implied value of a by regressing the implied a for 

option j on the security i on day t, oij,, on the variable representing the degree of which the 

option is in or at or out of the money, That is, they estimate the following regression 

model each day, 

= 0iot+0iitmij.+eij,  

where mjjt is defined as 

The estimated values of , 0;^, is their estimate of the a that would be implied by the 

Black-Scholes model on day t for an at the money option written on security i. They already 

excluded options with less than ninety days to expiration from the calculation of . 

To compare the observed market prices and the Black-Scholes model prices they 

relate the difference between Cjjj, the market price on day t of option j on security i with the 

exercise price Kjj , and the Black-Scholes model price of the same option, C'"(8;,J, to the 

extent to which the option is in or out of the money as measured by mjjt. 

Initially, they relate mjjt to Vjj,, the difference between the market price of an option 

and the Black-Scholes model price expressed as a percentage of the Black-Scholes model 

price. 

^ ^ Cu.-C-(8,J 
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The relationship of my, and vjj, is expressed on scatter diagrams which confirm the 

impressions gained from inspecting the regression results of against the degree the 

option is in-the-money, mjjt, and against the time to maturity. 

The authors conclude that if the Black-Scholes model correctly prices at-the-money 

options with medium to far maturities (such as, with at least ninety days to maturity), then 

the Black-Scholes model underestimates (overestimates) market prices for in-the-money 

(out-of-the-money) options. The extent of the mispricing decreases as the time to expiration 

decreased. 

In their second paper (1980), they confront the Black-Scholes model with the Cox 

model of constant elasticity of variance, assuming that the latter should reduce the mispricing 

of Black-Scholes prices observed in the first paper. 

MacBeth and Merville (1980) have maintained all of the assumptions of the Black-

Scholes option valuation model, except that the stochastic stock price process is generalized 

to a constant elasticity of variance process. The family of constant elasticity of variance 

diffusion process can be described by the stochastic differential equation as, 

dS = ^Sdt + 5S®'^dz 

where dz is a Wiener process, and 6 > 0. The instantaneous variance of the stock price is 

Ô^S® and the elasticity of this variance with respect to the stock price equals 6. The 

instantaneous variance of the percentage price change or return, is given by the equation 

jy2 ^ g2g(e_2) 

which is a decreasing function of the stock price for 9 < 2. When 6 equals two, the 

instantaneous variance of return is a constant, and the stochastic process generating 

returns is a lognormal diffusion process, the process assumed in the Black-Scholes valuation 

model. 
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The authors repeat the 1979 tests and conclude that "the stochastic-process-generating 

stock prices can best be considered as a constant elasticity of variance process" (1980, p. 

299). In his discussion of the MacBeth and Merville paper (1980), Manas ter (1980) points 

out the empirical superiority of the Cox model over the Black-Scholes model is not 

surprising at all. "Given that the Cox model includes Black-Scholes model as a special case, 

it is clear that the Cox model must explain observed option prices at least as well as the 

Black-Scholes model" (p. 301). 

Thorp and Gelbaum (1980) also believe, for empirical and theoretical considerations, 

that the constant elasticity of variance is a better model than the Black-Scholes. But, contrary 

to the findings of MacBeth and Merville, Thorp and Gelbaum claim that their experience in 

trading CBOE options while applying the Black-Scholes model is that this model tends to 

underprice the out-of-the-money options. The same phenomenon is also stated by Black 

(1975). The differences in results between the two studies may stem from changes in the 

average volatility of the market; better adjustment for the potential early exercise of the 

CBOE options in the latter study; and/or changes in the procedure for estimating the variance 

of the rate of return. MacBeth and Merville use the average implied standard deviation for 

at-the-money options and hence their prices are relative to the average (assuming that at-the-

money options are efficiently priced). Thorp and Gelbaum use the historical stock 

volatilities. 

Many studies have shown the biasness of the Black-Scholes model prices in 

predicting market prices of options. This bias may be due, in part, to violation of the Black-

Scholes assumptions of European option contracts with no dividend distributions on the 

underlying stock prior to expiration of the contract. 

Blomeyer and Klemkosky (1982) study the performance of the Black-Scholes model 

prices compare to the Roll option-pricing model. The objective of their paper is to examine 



www.manaraa.com

63 

the ability of each model to identify overvalued and undervalued option contracts on an ex-

post basis by using the hedging technique suggested by Black-Scholes (1972). 

Blomeyer and Klemkosky use the MacBeth and Merville technique of plotting the 

relative deviation of the model price from the market price against the degree the option is 

in-the-money to compare the Black-Scholes model to the adjusted Roll model suggested by 

Whaley (1981). The Roll model, which gives the price of the dividend-unprotected 

American call option, is more general than the Black-Scholes model and hence is expected to 

give more accurate predictions of market prices. The use of the Black-Scholes model prices 

for the stock paying a cash-dividend distribution prior to the option expiration date will bias 

the model prices downwards due to the possibility of early exercise of the option to capture 

the dividend payment. 

Transaction data for CBOE options written on eighteen stocks, for one trading day 

per month from July 1977 to June 1978, are employed in their research. The weighted 

implied standard deviation, WISD, given by Chiras and Manas ter (1978) is used to provide 

stock-return variance estimates for both the Black-Scholes and Roll models. Their 

methodology is to compare the means excess return on hedges of the two models aggregated 

across all transactions on all options written on a particular stock. The expected hedges 

excess return will be positive if the model is successful at identifying overvalued and 

undervalued call options and the hedge is established properly. The superior model should 

consistently develop higher holding-period returns. 

Based on 9108 observations of option prices they drew the conclusion that the mean-

holding-period returns realized from the Roll model exceeded those realized from the Black-

Scholes model for seven of the eighteen stocks, with none of the differences between the 

mean-holding-period returns for the two model significant at the .05 level. Furthermore, 

fifteen of the mean-holding-period returns were significantly different from zero at .05 level 
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and positive for both models. The graphical relationship between the relative deviation of the 

model price from the market price and the degree the option is in-the-money for both models 

shows that both models have virtually identical pricing-bias characteristics. The results are 

contrary to the MacBeth and Merville (1979) findings, but consistent with Thorp and 

Gelbaum (1980); both models undervalue, relative to the market, the out-of-the-money 

options and price fairly well the at- and in-the-money options. 

A recent study by Choi and Shastri (1989), examines the relationship between bid-ask 

spreads and estimates of volatility based on observed sequences of transaction prices. They 

derive some implications of this relationship for the use of the Black-Scholes model in the 

pricing of options. They show theoretically and empirically that volatility estimates based on 

observed sequences of transaction prices overestimate the 'true' volatility of returns on a 

security, with the magnitude of the overestimation being an increasing function of the level 

of the volatility. If market prices are determined by the Black-Scholes model based on 'true' 

variance but model values are obtained using observed volatility, then the model will 

overestimate the high variance stocks. 

The sample used in their study consists of all reported quotations for call options 

traded on the CBOE for four randomly selected dates, December 6, 1977; February 28, 

1978; June 16, 1978 and August 31, 1978. In order to avoid problems associated with time to 

maturity and moneyness biases, only short-term maturity and near-the-money options are 

used in their empirical tests. In addition, they eliminate options whose underlying stocks are 

expected to pay dividends over the life of the options because the Black-Scholes model valid 

only for European calls. 

According to Choi and Shastri's framework, the observed return on a security (rj 

consists of two components, the 'true' return (rj, and the spread induced return (rj) which 

can be described by 
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% = n + rî 

With a specific functional forni^ of the spread induced return on a security (rj), the 

covariance between the 'true' return on an asset (rj and the spread induced return is zero. 

The solution to the variance of the spread induced return is 

ol = (l-p)s^, and 

where s is the percentage bid-ask spread on a security, and p is the conditional probability of 

a transaction at the bid (ask) price following one at bid (ask) price. 

This relationship implies that the spread-induced variance is an increasing function of 

the percentage bid-ask spread on the stock whereas it is a decreasing function of the 

conditional probability of successive transactions being the same type. 

In their empirical tests, they assume that p is 0.5. To test the hypothesis that the 

magnitude of the bid-ask spread is an increasing function of the variance of returns, they 

regress s on which yields the following result 

s = 0.0027 + 7.25 a' 

The t-statistic of the slope coefficient is 9.38, far enough to support their hypothesis. They 

also test whether the differences between the Black-Scholes model prices based on observed 

variances and market prices of options are an increasing function of the volatility of the 

underlying security by the following regression result. 

C^-C = -0.43 + 13.96Ô 

' rj = sit where 

f + 1 if transaction at t is at ask and t - 1 is at bid 

11 = j - 1 if transaction at t is at bid and t - 1 is at ask 

[ 0 otherwise 



www.manaraa.com

66 

The t-statistics of the slope coefficient is significantly greater than zero at the 5% 

significance level which indicates the expected variance bias. Thus, using the volatility 

estimates based on observed sequences of security prices will overestimate the market prices 

with the size of the bias is an increasing function of the volatility of the underlying security. 

This variance induced bias is caused by the inclusion of the spread induced variance 

component, = o^ + o^ . Thus, to reduce this bias, one should use the 'true' variances 

instead of the observed stock volatilities. To see this relationship, Choi and Shastri regressed 

C" - C on the true variance, to yield the following estimated equation, 

C^-C = -0.41 + 10.85a' 

Although, the use of the variance adjusted for spread volatilities reduces the bias, the 

magnitude of the slope coefficient indicates that options on high volatility stocks are still 

overpriced relative to those on low volatility. This means that the spread induced volatility is 

not of sufficient magnitude to explain the variance bias exhibited by the Black-Scholes 

model. 

4.5 Simulation Results 

In general, the assumptions of the Black-Scholes model do not hold perfectly in 

reality. The question, therefore, is how robust the model is and how sensitive the results will 

be where deviations from the basic assumptions are observed. 

Boyle and Ananthanarayanan (1977) examine the implications of using an estimate of 

the variance in option-valuation models. They show the bias in the average option value to 

be rather small, even for relatively small samples of a stock' rates of return. However, the 

dispersion of the distribution of option prices may be quite significant. 
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Boyle and Emanuel (1980) analyzed the distribution of the returns on the hedge 

portfolio when rebalancing takes place at discrete points in time. Their studies were based on 

a world where the assumptions of the Black-Scholes model held with certainty. The discrete 

return on the hedge (HR) allowing for the opportunity cost of its equity is 

HR = AC - AS N(di) - r At[C - SN(d,)] + o(At) 

Expanding the option-pricing function by using Taylor's theorem yields 

AC = C. AS + Q At +1 C„ (ASf +1 C„ (At)" + C„ (ASAt) + 0 

where 0 contains terms of AS'At^ with i+j > 2, and o(At). Substituting the stock's price 

dynamic; that is, -^ = a At + o uVÂt + o(At) ; into the above equation produces, 

AC = C.AS + C,At + ^C„a'S"u'At + o(At) 

Substituting the values of , C^ and rearranging terms, HR can be express^ as 

HR = ^Z(d,)(u'-l)At 

The higher power terms of At were neglected, and Z(.) is the density function of standard 

normal distribution, Boyle and Emanuel define, 

. oS 

2 Vf 
y = u" -1 

Thus, HR becomes 

HR = A, y At 

As the results, the return on the hedge portfolio can be expressed as the product of three 

components. 

^ , and are partial derivative of F with respect to x, and second order partial derivative of F with 

respect to x, and y, respectively; For more details, see Boyle and Emanuel (1980). 
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• The deterministic function of the variables S, T, K, r, and which are 

contained in X evaluated at the time when the hedge is constructed. 

• The stochastic component of HR, y, which is drawn from a chi-squared 

distribution having zero mean. 

• The time interval between adjustments to the hedge. 

The value of HR will be negative if and only if lui < 1. As was mentioned by Boyle and 

Emanuel, the drawing of u is from the unit normal distribution which in turn HR will be 

negative about 69 % of the time. On another hand, for relative large stock price movement 

during the interval At, lui > 1, the hedge will only yield positive returns on the relatively 

few occasions. The skewness of the y-distribution makes the t-statistics for confidence 

interval of the hedge portfolio returns biased. 

The Black-Scholes assumptions are assumed to hold perfectly in their simulations. 

They performed ten thousand simulations of hedge performance over ten, twenty, forty, and 

eighty trading intervals. The specific values of parameters used in the simulation are ; r = 

0.008/month, a = O.OI/month, S/K = 0.9, 1, 1.1, and dt = 0.05 months which is one trading 

day. The first percentiles for the t-statistics are -5.6, -4.4, -3.7, and -3.5, for ten, twenty, forty 

and eighty trading intervals respectively. The ninety-ninth percentiles are 1.7, 1.7, 1.8, and 

1.9 respectively. For small sample sizes, the t-statistics will be biased downwards. This is 

because a negative mean return is caused by a predominance of negative daily hedge returns. 

The negative returns are closely bunched together and the variance estimate tends therefore 

to be low. This leads to a large negative t-statistic. Conversely, a positive mean return is 

caused by a predominance of positive widely dispersed daily returns. The t-statistic tends to 

appear insignificant because of the resulting high variance estimate. Another study that uses 

simulation to check the robustness of the Black-Scholes model is by Bhattacharya (1980). To 

eliminate the problem of measurement errors, he uses model prices for options. These values 
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coupled with the actual distribution of stock prices, are used in creating neutral hedge 

positions. 

Bhattacharya created hypothetical options with maturities of 1 through 5 days, 2 and 

3 weeks, 1, 1.5, 2, 3, 4, 6, and 9 months. For each maturity of one month or longer, four 

exercise prices to prevailing stock price ratios were employed. Of these, K/S ratios of 1.25 

and 1.125 represent deep-out-of-the-money, 1.0 and 0.875 represent at-the-money, and deep-

in-the-money, respectively. For very short maturities, in view of the rapidly changing 

3C/3S for near-the-money short maturity options, two more K/S ratios (1.05 and 0.95) 

were added to obtain finer grid. 

Observed stock returns for the 18-month period ending October 21, 1977, resulted in 

378 data points for each of the 91 stocks which had options traded on them on the CBOE and 

for which daily returns were available for each trading day from the CRSP daily returns data. 

In order to exclude the effect of stock splits or stock dividends, he excluded the stocks which 

had stock dividends or stock splits over the 18-month period. 

If the mathematical structure of the formula is correct, according to Bhattacharya, the 

average hedge return will be insignificantly different from zero. Significant excess hedge 

returns may be attributed to the deviation of the actual distribution of stock prices from the 

assumed stationary, lognormally distribution, and "would be considered as evidence in 

support of the hypothesis that when observed stock prices are used as input, the Black-

Scholes formula exhibits pricing biased" (p. 1085). 

The major result of the study is that options near-in-the-money and near-out-of-the-

money with maturities of five days or less are frequently statistically significant whereas at-

the-money one-day-to maturity options provide statistically and operationally significant 

excess returns. 
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CHAPTER 5. MISPRICING OF THE BLACK-SCHOLES MODEL 

The literature, which includes empirical studies, confirms that the Black-Scholes 

formula tends to exhibit systematic empirical biases. The bias patterns often occur with 

respect to exercise price, time-to-maturity, and stock volatility. Specifically, the model tends 

to underprice options near maturity or on low-variance stocks and to overprice options on 

high-variance stocks. Additionally, the exercise price bias is such that models using pre-1977 

data underprice out-of-the-money options and overprice in-the-money options. The patterns 

are reversed in models using post-1977 data. 

When model price is compared with observed option price, stock volatility needs to 

be estimated. One candidate used widely as a proxy for expected volatility is implied 

volatility, as suggested first by Latane and Rendleman (1976). This estimate, however, is 

sensitive to change in option positions. Day and Lewis (1988) explain that there are two 

significant sources of noise that makes the implied volatilities of options sharing time-to-

maturity and exercise price unequal. These sources are the uncertainty of whether option and 

stock prices reflect bid or ask levels and the failure to observe simultaneously option price 

and underlying security price. 

Rubinstein (1985) investigates these relations and reports that out-of-the-money 

options with shorter lives have greater implied standard deviations (ISDs), which, in turn, 

implies that such options are relatively overpriced. He confirms MacBeth and Merville's 

(1979) findings that ISDs tend to increase with decreasing striking prices for 1976 data and 

that this biased pattern continues until approximately October 1977. Towards the end of 

1977 and during 1978, however, the bias is reversed. For at-the-money options during the 
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first subperiod, the longer the option life, the greater the relative ISD. The reverse is 

observed during the second subperiod. 

The empirical evidence of previous studies indicates that the implied volatilities not 

only contain information on the anticipated change in stock returns but also relate 

systematically to the option position with respect to time-to-maturity and degree-of-

moneyness. Thus, using only a single estimated implied volatility to describe the whole series 

of option data may distort the true behavior of market option prices. On the other hand, if the 

estimated implied volatility of the out-of (at or in) -the-money is used to construct the model 

price for the out-of (at or in) -the-money options, the Black-Scholes model price may be 

related more closely to the observed out-of (at or in) -the-money market option prices. 

Our analysis is basically similar to that of MacBeth and Merville (1979). But to 

estimate the implied volatility, our study uses a nonlinear least squares estimation procedure. 

Such a technique is suggested by Whaley (1982), Day and Lewis (1988), and Stephan and 

Whaley (1990). Unlike previous empirical studies, which compute only a single volatility 

estimate for all options written on a stock, our study uses four different approaches to 

estimate implied volatilities. These are 1) computing a single estimated implied volatility 

from all options, 2) separating options into five groups based on their degree-of-moneyness 

and computing the corresponding implied volatilities, 3) using options sharing time-to-

maturity so as to estimate implied volatilities^ and 4) estimating implied volatilities for 

options sharing time-to-maturity and degree-of-moneyness. These four approaches permit 

testing of the stationarity of implied volatility across maturities and/or striking prices. 

Although disagreeing strongly with the Black-Scholes assumption of constant volatility, our 

findings support the visual examinations of Latane and Rendleman (1976), Schmalensee and 

Trippi (1978), MacBeth and Merville (1979), and Beckers (1980) and the nonparametric test 

'Whaley (1982) and Stephan and Whaley (1990) apply this technique. 
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of Rubinstein (1985) in that there is a fundamental inconsistency in using the Black-Scholes 

model to obtain predictions of a presumably nonstationary variance. Nevertheless, the Black-

Scholes model remains of value in predicting of market option price. 

Investingating the mispricing of the Black-Scholes model, MacBeth and Merville 

(1979), Whaley (1982), Gultekin, Rogalski, and Tinic (1982), and Choi and Shatri (1989) 

regress the difference between observed and model option prices^ on option maturities 

and/or degree-of-moneyness. There is a "sizable positive autocorrelation in the error terms..., 

which, in turn, probably results from the effects of one or more explanatory variables left out 

of the regression model" (MacBeth and Merville, 1979, p 1185). Thus, "the statistics of the 

estimated coefficients... cannot be strictly interpreted because they overstate the statistical 

significance of the estimated coefficients" (MacBeth and Merville, 1979, p 1184). 

To solve the statistical problems faced by previous studies, we construct a robust 

model to test the systematic over- or underpricing of the Black-Scholes model by 

incorporating the effects of striking price, time-to-maturity, and autoregressive error directly 

into model price. This technique improves the efficiency of estimated model parameters. 

5.1 Past Empirical Studies 

In a seminal paper, Black-Scholes (1972) presented a closed-form valuation model 

for European options. Merton (1976) demonstrated later that the Black-Scholes model for 

valuing European call options is applicable equally to American call options written on 

stocks not paying dividends and on call options protected against dividend payouts. Closed-

form solutions to option prices for stocks paying dividends at known, discrete time intervals 

have been established by Roll (1977) and by Geske (1979). 

^In testing the systematic variance biases of the Black-scholes model prices, Choi and Shatri regress the 
prediction error on the 'observed' volatility computed from daily returns of CRSP Daily Returns files. 
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. Despite the enormous interest that the Black-Scholes model generated in the 

academic and the professional communities, the model incorporates only a few empirical 

tests. An initial test by Black and Scholes (1973) used a sample of 2,039 call and 3,052 

straddle contracts from diaries of an option broker from 1966-1969. The researchers found 

systematic differences between the actual option premiums observed in the market and those 

estimated by the model. In particular, actual premiums of options written on high-variance 

stocks were lower than premiums predicted by the model. On the other hand, premiums of 

options on low-variance stocks were higher than those predicted by the model. Black-

Scholes attributed this bias to their inability to obtain accurate estimates of the variance rate 

on common stocks. 

In their initial paper, MacBeth and Merville (1979) described the standardized 

difference between the actual and the Black-Scholes model call prices as 

cf-C 
CM 

where Cf and C" are the actual and the Black-Scholes model call prices, respectively. For a 

sample of daily closing prices for six stocks from 31 December 1975 to 31 December 1976, 

MacBeth and Merville observed this statistic to be an increasing function of the extent to 

which the option is in- or out-of-the-money: 

S.-K,e-" 

K,e" 

For deep-in-the-money options, the difference between observed market prices and model 

prices seemed constant and positive. For deep-out-of-the-money options, the difference was 

negative. Regression results of C*-C^ against the degree to which the option is in-the-

money and against the time-to-maturity, confirm the impressions gained from inspection of 

individual scatter diagrams. 
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The authors concluded that if the Black-Scholes model correctly prices at-the-money 

options with medium to far maturities, i.e., options with at least 90 days to maturity, then the 

model underestimates (overestimates) market prices for in-the-money (out-of-the-money) 

options. Extent of mispricing decreases with time-to-expiration. 

MacBeth and Merville assume market efficiency and attribute deviations of model 

price from actual price to model weakness, especially the assumption of a constant variance 

in rate of return. In their second paper (1980), they confront the Black-Scholes model with 

the Cox model of constant elasticity of variance, assuming that the latter should reduce the 

mispricing of the Black-Scholes model observed in their own first paper. They repeat the 

1979 tests and conclude that "the stochastic-process-generating stock prices can be best 

considered... a constant elasticity of variance process" (1980, p. 299). 

In his discussion of the MacBeth and Merville paper (1980), Manas ter (1980) points 

out that the empirical superiority of the Cox model to the Black-Scholes model is not at all 

surprising: "Given that the Cox model includes the Black-Scholes model as a special case, it 

is clear that the Cox model must explain observed option prices at least as well as the Black-

Scholes model" does (p. 301). He suggests that an ex-ante trading strategy be performed to 

determine which model is superior. 

Comparing the Black-Scholes model with the Roll (1977) model, Blomeyer and 

Klemkosky (1982) use the MacBeth and Merville techinque of plotting the relative deviation 

of model price from market price against the degree to which the option is in-the-money. 

The Roll model, which gives the price of the dividend-unprotected American call option, is 

more general than the Black-Scholes model and hence should yield more accurate 

predictions of market prices. Transaction data for CBOE options written on 18 stocks for one 

trading day per month from July 1977 to June 1978 are used. Blomeyer and Klemkosky 

draw the conclusion based on 9,108 observations of option price, that the two pricing models 
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have virtually identical pricing-bias characteristics. The results are contrary to those of 

MacBeth and Merville (1979), however. 

Instead of using a single implied volatility for all maturities, Whaley (1982) uses the 

Black-Scholes model to calculate the maturity-specific implied stock volatilities. In 

comparing the American call option valuation with the Black-Scholes formula and the Black 

approximation formula, he finds that all models demonstrate a slight tendency to overprice 

low-priced options and to underprice high-priced ones. For options whose prices exceeded 

$0.50 and whose remaining lives included exactly one ex-dividend date, the relative 

prediction error of the American call is markedly smaller than that of the alternative models 

and is systematically unrelated to the degree to which the option is in-the-money or out-of-

the-money, the probability of early exercise, the option's remaining time-to-expiration, or the 

dividend. 

Gultekin, Rogaski, and Tinic (1982) present empirical evidence to explain the 

accuracy of the Black-Scholes model in estimating premiums of options approaching 

expiration. Option values obtained from the Black-Scholes model, on average, overestimate 

prices of options written on high-variance stocks and on in-the-money options but 

underestimate prices of options written on low-variance stocks and out-of-the-money 

options. Beyond that, the differences between values calculated by the model and actual 

option prices increase with time to expiration. That is, the shorter the maturity, the more 

accurately the Black-Scholes model estimates actual prices. 

The empirical study of Levy and Byun (1987) attempts to test the systematic bias of 

the Black-Scholes model by using the confidence interval of the estimated variance to derive 

the confidence interval of model call-option value. Even when the variance confidence 

interval is considered, a systematic deviation between the theoretical range of the option 

price values and the observed market price still exists. The researchers state that "if the stock 
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variance is constant over time, the interpretation of the Black-Scholes model is wrong" 

(Levy and Byun, 1987, p. 355). If, however, stock variance changes over time, they state that 

"the implied volatility in options market prices had a tendency to be significantly higher than 

the estimate that could have been obtained from historical data" (Levy and Byun (1987), p. 

355). 

5.2 Methodology 

Two main issues will be discussed in this section. The first concerns testing the 

implications of the Black-Scholes model assumption of constant stock volatility; the other, 

developing a robust model to reinvestigate the systematic over- or underpricing of the model. 

Basically, both estimated stock volatility and mispricing are related to changes in option 

position. Thus, it becomes useful to describe how options are classified with respect to both 

in-the-money degree and maturity. 

In general, options sharing a maturity have a closed estimate of implied volatility and 

the same mispricing behavior. Our study, therefore, categorizes options according to 

expiration month, as indexed by t. Because the option data used in this thesis are from 

March 1990, x can assume values from 1 to 5. For example, the expiration months of GE 

option contracts sold in March 1990 can be in March, April, May, June, or July, which 

correspond with the values 1=1,2,3,4, and 5, respectively. 

The estimated implied volatility and the mispricing degree also are related closely to 

the moneyness degree. On the basis of stock (S)-to-striking (K) price ratio, most empirical 

studies partition options into three groups, viz., out-of-the-money (S./K < .9), at-the-money 

(.9 < S/K <1.1), and in-the-money (S/K >1.1). But the option data used in our study contain 

a great percentage of at-the-money options (greater than 85%). To refine the analysis and to 
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examine the at-the-money option behavior, the study classifies these options into three 

categories, viz., at-the-money near out-of-the-money (0.9 < S/K < 0.975), at-the-money 

(0.975 < S/K < 1.025), and at-the-money near in-the-money (1.025 < S/K < 1.1). Thus, 

representing moneyness degree, k ranges from 1 to 5, as specified; 

k = 

1 if S / K < 0.9, 

2 if 0.9<S/K <0.975, 

3 if 0.975 < S/K <1.025, 

4 if 1.025 <S/K< 1.1, 

5 if S/K >U, 

out - of - the - money 

at - the - money near out - of - the - money 

at - the - money 

at - the - money near in - the - money 

in - the - money 

5.2.1 Testing the Implications of Black-Scholes Model Assumption 

One of the basic assumptions of the Black-Scholes model is that the variance of 

return rate is known and constant. If the model is correct, and option and stock markets 

efficient and synchronous, the model assumption implies that the volatility implicit in option 

price also is stationary over time and across maturities and/or striking prices. 

The regression function for the call-option price, expressed in terms of the Black-

Scholes function, F(.), and a random error (s, ), is 

CT = F(x,) + e, , 
where 

F(xJ = SN(d,)-Ke-^^N(d2) ; 

d, = J—[ln(S /K) + (r+.5Xt)T], and d^ = . 

The index t stands for the time the option is priced; N(.), the cumulative standard normal 

distribution; S, the stock price adjusted for dividends; K, the striking price; r, the risk-free 

interest rate; T, the time-to-maturity; and xt, the implicit volatility. 
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To test the implications of the Black-Scholes' assumption, the behavior of xt with 

respect to both moneyness degree (k) and maturity month (t) must be specified. Given that 

the model is correct and that option and stock markets are efficient and syschronous, the 

Black-Scholes model assumption implies that the volatility implicit in option price also is 

stationary over time and across maturities and/or striking prices. Thus, if these implications 

of model assumption are violated, there are three possible means of determining how xt is 

related to k and to x. 

First, consider the situation in which the implicit volatility deviates from its true 

mean as a function of degree-of-moneyness, k. That is, the hypothesized model is defined as 

f s \ 
Q = F a'+^b.â, 

V ic=l 
+ St ' (5.1) 

where is the true mean of the implicit volatilities across the degree-of-moneyness, k; bk 

for k = 1, 2,...,5 represents the deviation of the implicit volatility from its mean such that 

]^bk = 0; and 

1 if the moneyness deg ree is k, and 

5  

s k=l 

gtlc = 
0 otherwise 

Furthermore, the model assumes that the independent s, has zero mean with variance: 

E{sf} = • 
k=l 

Similarly, the second instance occurs when xt is unequal across maturity month, x. 

Here, the pricing model is specified as 

Q = F G^+%]c, h,l + G, , (5.2) 
V t=l J 

where Cx for t = 1, 2,...,5 represents the deviation of implicit volatility from its mean across 
s 

maturity month, x, such that ^c^ = 0 ; and 
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f 1 if the maturity month is t, and h = < 
" [0 otherwise, 

with E{e;} = 2;n,h„ • 
T=1 

Finally, the third model assumes that xt is a function of both striking price and 

maturity month. That is, 

( • 5  5  \  

Q = F + + St (5.3) 
V k=l T=1 J 

where dkx measures the deviation of the implicit volatility from its mean across both 
s s 

moneyness degree and maturity month, with the restriction that = 0. The model 
k X 

5  5  

also assumes that E{sj I = • 
k=l T=1 

These three alternative models will be tested against the Black-Scholes model, whose 

assumption is that the implicit volatility is constant (xt = a2) across k and x. Thus, to adjust 

for the unequal option variances across option positions, the generalized nonlinear least 

squares is needed to fit the alternative models as well as the Black-Scholes. A sizable 

reduction in the sum of squares of residuals (SSE) indicates that the Black-Scholes 

assumption is inappropriate. Specifically, the F-test, 

(SSE°^-SSE')/(df"^-df) 

MSE' 

is compared with the tabulated F-distribution at a level, with the upper degrees of freedom 

equal to the difference between the degrees of freedom from the SSE of the Black-Scholes 

and the i* alternative model, and the lower degrees of freedom equal to those from the SSE 

of the i^h alternative model. 

Because all models specified in the study have the same form as the Black-Scholes 

function, rejecting the Black-Scholes assumption in favor of the alternative models does not 

imply that the Black-Scholes model itself is useless in predicting option price level or that 
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the stock volatility is described best by the Ito process. Data indicate only that model option 

prices will relate relatively closely to observed market option prices if a suitable set of 

implied volatilities is substituted into the Black-Scholes function. 

5.2.2 Constructing a Robust Model 

Although it has been well known since 1976 that implied volatilities vary across 

maturities and/or striking prices, most empirical studies compute a single volatility estimate 

on the basis of all options written on a stock at a certain time and use one such estimate to 

analyze option mispricing. Whaley (1982) and Stephan and Whaley (1990)^, on the other 

hand, argue that maturity-specific implied stock volatilities are more appropriate than single 

implied volatility estimate sharingfor all options. Our study, however, assumes that the 

implied volatilities not only contain information on anticipated change in stock returns but 

also relate systematically to option position with respect to time-to-maturity and moneyness 

degree. The study therefore follows the results of statistical tests from the previous 

subsection, which strongly support the third alternative model. 

To examine the difference between the Black-Scholes model prices and the observed 

market prices, previous empirical studies (see for example, MacBeth and Merville (1979), 

and Whaley (1982)) relate the difference between the market price and the Black-Scholes 

model price of the same option to the extent to which the option is in or out of the money, as 

measured by 
S - K e "  m = — 

^Their idea is based upon the argument of Patell and Wolfson (1979) that the standard deviation implicit in 
option price for a longer-lived option written on a stock is greater than that for a shorter-lived option if there is 
an anticipated information event, such as an earnings announcement, between the expirations of the two 
options. Thus, their estimated implied volatilities derive from a model similar to Model 5.2 of this study. 
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and/or by option maturities (T). If regression results indicate a significantly positive 

(negative) relation between the residual of the Black-Scholes model and the regressor(s), 

options would seem overpriced (underpriced) with respect to striking prices or maturities. 

The significance of the effect of striking prices and maturities indicates, however, 

that 

1) the observed option prices themselves are related closely to the degree-of-

moneyness (m), 

2) the observed option prices themselves are related closely to their maturities 

(T), and 

3) the implied volatilities themselves are related closely to striking prices and to 

maturities. 

Furthermore, MacBeth and Merville (1979) and Whaley (1982) report that the regression 

residuals also are correlated serially. These regression problems need correction if a 

meaningful conclusion about the systematic mispricing of the Black-Scholes model is to be 

arrive at. Both striking-price (m) and maturity (T) factors must be included as regressors in 

the regression model and allowed to change across moneyness degree (k) and maturity 

month (t). Similarly, specification of implied volatilities must be such that they can vary 

across k and t. Finally, an autoregressive process reflecting the serial correlation among 

option prices is included. Surprisingly, as will be seen in Section 5.3.2., this random 

component changes systematically across k and x. Thus, the ARl (p) process is specified in 

such a way that it can change additively across k and x. 

The regression function corresponding to the foregoing model description is 

C, = F 
i=l j=I J V. i=l j=l J 
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P + Èl',Z„ + X<I>jW, 
V i=l j=l 

.(T,-T) + e, , (5.4) 

with Gt = P + S^iZit + S^jWjt U.-l+Tlt • 
1=1 j=l J 

m and T are the means of m and T, respectively; Zi's (their definitions are the example for 

GE options) and Wj's are 

Z, = 
1 for Mar 
0 for Apr,May,Jun, 

-1 for Sept 
2,2 -

1 for Apr 
0 for Mar,May,Jun, 

-1 for Sept 

Z3 = 
1 for May 
0 for Mar,Apr,Jun 

-1 for Sept 
Z4 -

1 for Jun 
0 for Mar,Apr,May, 

-1 for Sept 

Wi = 

1 if - <0.9 
K 

-lif- >1.1 
K 

0 Otherwise 

W, = 

1 if 0.9 <— <0.975 
K 

-lif->1.1 
K 

0 Otherwise 

W3 = 

1 if .975 <— <1.025 
K 

-lif — >1.1 
K 

0 Otherwise 

, and W. = 

1 if 1.025 <— <1.1 
K 

-lif - >1.1 
K 

0 Otherwise 

Thus, Zi's and W^'s have the same role as do gk's and hx's in previous subsections in 

identifying options according to moneyness degree and maturity month. Model 5.4 assumes, 

however, that TII is distributed identically, with zero mean and constant variance. 
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The stock return variance rate not a function of Zi's and Wj's but implicit in option 

price is measured by <t2. But, in practice, as mentioned in previous subsections, implicit 

variance (implied volatility) is related systematically to option position. Thus, Model 5.4 has 

introduced 0i and $ j to represent the deviation of implicit volatility from its constant value, 

a2, with respect to maturity month and moneyness degree, respectively. From the definition 

of Zi's , 0i for i = 1, 2, 3, 4, and -S0i represents the deviation of the implied volatility 

from a2 of the GE options maturing in March, April, May, June, and September, 

respectively. Likewise, for j = 1, 2, 3, 4, and measures the deviation of the implied 

volatility from a2 across moneyness degree, k, for k = 1,2,..., 5, respectively. 

The interpretation of the individual parameters a, A-i, y j , P, vj/i, <? j, p, Oj, and vj is 

similar to that for o2,8;, and * j. For example, deviation of the striking price effect (from its 

mean, a) across maturity month, x for x = 1, 2,..., 5, is represented by Xi for i = 1, 2, 3, 4, 

and , respectively. On the other hand, deviation of the striking effect (from its mean, a) 

with respect to the degree-of-moneyness, k for k = 1,2,..., 5, is measured by tj from j = 1, 2, 

3,4, and -Sy j, respectively. 

The most valuable information that can be extracted from the model is the partial 

effects of striking price and time-to-maturity, which are represented by the linear 

combination of a, X,i, v j and P, vj/i, <? j for i, j = 1,2, 3,4, respectively. These two effects 

combined determine the mispricing of the model price, F(.). For example, according to the 

definition of Z's and Ws and the meaning of the individual parameter a, Xi, y j, p, Yi, and 

9j, the partial effect of time-to-maturity (across k and x) on the options written on GE in 

March 1990 is determined according to the significance of elements in Table 5.1. Because 

the model is designed to examine the systematic pattern of striking price and maturity biases, 

it is constructed additively. 
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Table 5.1 The Maturity Effects Across Degree-of-Moneyness and Maturity Month 

Mature in March April May June September 

S/K^O.9 P  +  V  1 +  9 i  P  +  ̂ 2 +  9 i  P  +  ¥ 3 +  9 l  P +  Y 4 +  9 1  P  -  I  V  +  9 1  

.9<S/K^.975 P  +  V  1  +  < P 2  P  +  V 2 +  f 2  P  +  V  3 +  9 2  P  +  V  4  +  9  2  P  -  2  V  +  9 2  

.975<S/K51.025 P  +  V  1  +  9 3  P  +  V 2  +  9 3  P  +  ¥  3  +  9  3  P  +  Y 4 +  9 3  P  -  2  V  +  9  3  

1.025<S/K<1.1 P  +  V l +  9 4  P  +  V  2 +  9 4  P  +  V 3  +  9 4  P + V 4 +  9 4  P  -  2  V +  9 4  

S/Kàl.l P  +  V 1  -  S  9  p  +  Y  2  ~  Z  " P  P  +  V 3  -  S  9  P  +  V  4  -  S  9  P  -  2  V  -  2  9  

From Table 5.1, the partial effects of time-to-maturity of out-of-the-money March, April, 

May, June, and September options depend upon the value of p + vj/j + (pi for i = 1, 2, 3, 4, 

and P -Zvj/i + (pi. Thus, the difference between the partial effects of the out-of-the-money 

March and May options can be determined by v|/i- v|/2, which is, for example, also equal to 

the difference between the partial effects of the in-the-money March and May options. Thus, 

Model 5.4 is specified such that the effect of time-to-maturity (striking price, implied 

volatility, and serial correlation coefficient) of options with different maturities (moneyness 

degrees) is the same across degree-of-moneyness (maturity month). 

By substituting (p, v|/, and (p) for (cP", 0, and (j)), (a, X, and y), and (p. d, and d), 

respectively. Table 5.1 also applies for examinations of the systematic effects of implied 

volatility, striking price, and ARl process. 

For simplicity of notation, let 

4.. = o' + X9iZ. + Xl>iWj, , 
i=l j=l 

«m = a + + XYjWj, , 
i=l j=l 

Pktt = P + -and 
i=I j=l 
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Pk.t = P + S^iZi. + . 
i=l j=l 

then. Equation 5.4 can be rewritten as 

Q = ®kTt(iT^t ~ 111) + Pktt(Tt-T) + Pk„£t_i + T], . (5.5) 

Not only can this model correct various kinds of regression problems faced by the 

conventional approach, many hypothesis testings of interest can be performed. Furthermore, 

the model permits estimation of implied volatilities in the cells that have, even, zero 

observations. The SYSNLIN procedure of SAS/ETS'^ can be applied easily to estimate 

parameters in Model 5.5. 

To confirm the adequacy of the specified model and to confirm the invalidity of the 

Black-Scholes model assumption^, four alternative models will be tested against Model 5.5: 

Ct = F((^L) + akT,(m, - m) + Pkt,(Tj -T) + pe,_, + ri, , (5.6) 

Ct = F(a==) + a,„(m,- ni) + Pkxt(T.- T) + PkuEt-i + n,, (5.7) 

Ct = F(Gkn) + ak.,(m. - m) + - T) + ri, , and (5.8) 

Ct = F(a') + a,,,(m,- m) + Pkit(T, -T) + rij . (5.9) 

Models 5.7 and 5.9 support the Black-Scholes assumption; but the former (and also Models 

5.5 and 5.6) allows option prices to be correlated serially. To determine the contribution of 

the ARl process to the observed option prices. Model 5.8 is tested against Model 5.5. 

Surprisingly, in an examination of Models 5.5 and 5.6, not only is the superiority of Model 

5.5 revealed but also the ARl process changes systematically across maturities and striking 

prices. 

'•SAS/ETS User's Guide. Version 5 Edition. Gary, NC; SAS Institute Inc., 1984. 
^In the previous subsection, option prices are assumed to be independent across t but to share a common 

variance with respect to k and/or to T. This subsection, however, relaxes the independent assumption. 
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Another advantage to applying Model 5.5 is that the model is so general that it can be 

used to examine other kinds of behavior of the systematic mispricing of Black-Scholes. For 

example, one may wish to know whether the deviation of observed and model prices across 

striking prices (striking price bias) is the same for May and June options, or whether the 

pattern of deviation across maturities (maturity bias) is the same for near-in and near-out of 

the money options. Model 5.5 also can be used to investigate the behavior of at-the-money 

implied volatilities. Most empirical studies claim that these estimates seem stable over option 

maturity. With the help of Model 5.5, this kind of hypothesized statement can be tested 

easily. In addition, Model 5.5 offers a means of estimating the implied volatility of stock 

return, a2, that is independent of trading time, striking price, and maturity. Thus, this stable 

estimated implied volatility may be a better indicator of stock volatility than is either the at-

the-money implied volatility or the historical variance. 

5.2.3 Data 

The options data used for this study are taken from the Market Data Report of the 

CBOE. They consist of reported trades and quotes on the floor of the CBOE in March 1990 

for options on AVON, GE, GM, IBM, COKE, and AT&T. Only call-option prices having a 

total contract volume of at least 3 and having been traded after 1,000 seconds after 9:00 are 

selected. The dividend information for these underlying assets comes from Standard and 

Poors Stock Record. The risk-free rate for each option maturity is computed using the 

average of bid and ask discounts of the Treasury Bill whose maturity most closely matches 

maturity of the option. The present value of dividends is computed based upon the yield on 

the Treasury Bill maturing near each ex-dividend date. 
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5.3 Results 

5.3.1 Testing Implication of the Black-Scholes' Assumption 

This section first presents the result of tests of the implication of the assumption 

underlying the Black-Scholes model, i.e., the stability of the implied volatility implicit in the 

option price across maturities, and/or striking prices. To test this assumption, the first step of 

the procedure is to use the nonlinear least squares procedure to calculate the estimated 

implied volatilities across maturity month (x), and/or degree-of-moneyness (k). The second 

step is to reapply the nonlinear least squares technique, treating the residual mean squares 

from the first step as weights. These weights are used again to compute the implied volatility 

from the Black-Scholes model. This second step is required to ensure that the option 

variances from Models 5.1 to 5.3 are close to those from Black-Scholes. If the result from 

step one indicates, however, that option variances are equal, then it is unnecessary to follow 

step two. For example, the Mar 90 options on GE will be analyzed step by step, but for other 

options, the first step of the procedure will be omitted. 

Step 1 According to Section 5.2.1, there are three models describing the behavior of 

implicit volatilities. The first states that the implicit volatility deviates from the true variance 

rate of return, a2 , by the amount bk across degree-of-moneyness, k , for k = 1, 2,...,5. That 

is, 

C, = F(XJ + e, . with E{e^} = , 
k=l 

5 
Where x, = + ^b,g„ . 

k=l 

Estimation results of this model are summarized in Table 5.2. According to Table 5.2, the 

estimated implied volatilities increase as the options go in the money. Because the estimated 

option variances, MSB, seem to increase as striking price decreases, except for the at-the-
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money near-in-the-money options, the table supports the models underlying assumption that 

option variances are unequal across striking prices. Thus, to test the hypotheses that 

Hg : b; = b; =...= b; = 0 and 

H, : at least one b^ 9^ 0 , 

the weighted nonlinear least squares need to apply to both the Black-Scholes model and 

Model 5.1 if the option variances from the two models are to be equal. 

Table 5.2 Nonlinear Least Squares Fitted to Model 1 For GE Options 

S/K ^0.9 0.9 < ^ .975 .975 <:S 1.025 1.025 << 1.1 S 1.1 

àl .037828 .038976 .038994 .04901 .062631 

SSE I .35783235 21.9628683 39.1567416 20.720607 4.416449 
MSB .0104448 .0175702 .0319125 .0215167 .0322368 
d.f 130 1250 1227 963 137 

Step 2 The weighted nonlinear least squares with weights equal to residual mean 

squares are fitted to all the alternative models, to test the homogeneity of volatility implicit 

in option price across option position. If each of hypothesis is satisfied, then the implication 

of the Black-Scholes model assumption cannot be rejected: 

1) H„: bi = b; =...= b; =0 , 
2) H„: c, = Cj =...= C5 = 0 and 
3 )  H g :  d | j ^ = 0  f o r a l l k a n d x  .  

The summary statistics with which to test the implication of the Black-Scholes assumption of 

constant implicit volatility across maturities and/or striking prices for Mar 90 options on GE, 

GM, IBM, ATT, AVON, and COKE are given in Tables 5.3 through 5.8, respectively. The 

F-computed's in Tables 5.3 through 5.8 are the calculated F test formula presented in 

Subsection 5.2.1. These statistics show that the implicit volatilities do vary across option 
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maturities and/or exercise prices, because all the F-computed's are greater than the tabulated 

F statistics. As a result, all three alternative models are superior to the Black-Scholes. Thus, 

the implication of the Black-Scholes assumption is rejected strongly at the 5% significance 

level. All alternative models, however, have the same functional form as does the Black-

Scholes. Thus, the usefulness of the Black-Scholes model price is undeniable. 

Table 5.3 Nonlinear Weighted Least Squares for Testing the Black-Scholes 
Model Assumption: Mar 90 GE Options 

Black-Scholes (BS) vs the ith Alternative Model 

BS 1 BS 2 BS 3 

SSSE 4702.725 3707 4308.0397 3707 6265.197 3690 

Zdf 3711 3707 3711 3707 3711 3690 

F-computed 248.93 150.26 122.628 
F-table at 
a = .05 2.37 2.37 1.57 

Table 5.4 Nonlinear Weighted Least Squares for Testing the Black-Scholes 
Model Assumption: Mar 90 GM Options 

Black-Scholes (BS) vs the ith Alternative Model 

BS 1 BS 2 BS 3 

ZSSE 5452.597 3417 3729.581 3417 8942.449 3400 

Zd.f 3421 3417 3421 3417 3421 3400 

F-computed 508.89 78.15 263.926 
F-table at 
a = .05 2.37 2.37 1.57 
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Table 5.5 Nonlinear Weighted Least Squares for Testing the Black-Scholes 
Model Assumption: Mar 90 IBM Options 

Black-Scholes (BS) vs the ith Alternative Model 

BS 1 BS 2 BS 3 

ESSE 26426.260 25414 29009.019 25414 35774.634 25397 

Sdi 25418 25414 25418 25414 25418 25397 

F-computed 1012.26 3595.019 10377.634 
F-table at 
a = .05 2.37 2.37 1.57 

Table 5.6 Nonlinear Weighted Least Squares for Testing the Black-Scholes 
Model Assumption: Mar 90 ATT Options 

Black-Scholes (BS) vs the ith Alternative Model 

BS 1 BS 2 BS 3 

ESSE 3301.214 2792 3135.583 2792 6625.986 2775 

Zd.f 2796 2792 2796 2792 2796 2775 

F-computed 127.30 85.89 183.38 
F-table at 
a = .05 2.37 2.37 1.57 

Table 5.7 Nonlinear Weighted Least Squares for Testing the Black-Scholes 
Model Assumption: Mar 90 AVON Options 

Black-Scholes (BS) vs the ith Alternative Model 

BS 1 BS 2 BS 3 

E S S E  3133.032 2431 3158.854 2431 5886.815 2413 

Sd.f 2435 2431 2435 2431 2435 2413 

F-computed 175,51 181.96 157.90 

F-table at 
a = .05 

2.37 2.37 1.57 
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Table 5.8 Nonlinear Weighted Least Squares for Testing the Black-Scholes 
Model Assumption: Mar 90 COKE Options 

Black-Scholes (BS) vs the ith Alternative Model 

BS 1 BS 2 BS 3 

ESSE 1663.148 1541 1599.783 1541 2077.275 1525 

Zd.f 1545 1541 1545 1541 1545 1525 

F-computed 30.537 14.69 27.61 
F-table at 
a= .05 2.37 2.37 1.57 

These statistical test results support the visual investigation of Latane and Rendleman 

(1976), Schmalensee and Trippi (1978), MacBeth and Merville (1979), Beckers (1980), and 

Rubinstein (1985). These authors find that their results are inconsistent with the Black-

Scholes framework, but the model is, nevertheless, valuable in predicting market option 

prices. It may be that the model is somewhat insensitive to violations of the nonstationary 

assumption. 

5.3.2 Investigating the Mispricing of the Black-Scholes Model 

Because the test results and the results of other empirical studies indicate that implicit 

volatilities not only contain information regarding anticipated change in stock returns but 

also relate systematically to the option position with respect to time-to-maturity and/or 

striking price, further analysis of the thesis will be based upon the structure of Model 5.3. 

Studies of the systematic mispricing of the Black-Scholes model typically have 

regressed the option prediction errors on option time-to-maturity (T), and/or degree-of-

moneyness (m). This tradition explains the systematic deviation patterns by examining the 
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sign and the significance of regression coefficients. But the technique, in turn, makes test 

statistics unreliable and interpretations of coefficients meaningless. This problem occurs 

because the strong correlation of prediction errors (regression residuals) with maturities 

and/or striking prices implies that market option prices themselves are highly correlated with 

these regressors. Johnston (1984) thus states that the omission of these relevant regressors 

from the original model (that producing the prediction errors) yields biased coefficient 

estimates. Furthermore, the conventional inference procedures are undermined because the 

disturbance variance cannot be estimated correctly. One way to correct this problem is to 

include these important regressors (maturities and striking prices) in the model. Models 5.8 

and 5.9 represent these corrections, but the latter is based on the Black-Scholes assumption 

of constant volatility: 

C, = F(a^,j + a;,,^(me-m) + pk^,(T,-T) + ri, ,and (5.8) 

Q = F(o^) + a,Jm,-m) + p,,,(T,-T) + n, • (5.9) 

Another problem conmion in this field of study is that market option prices are 

correlated serially. The consequences of ignoring this problem and of using least squares 

procedures to estimate option parameters (see, for example. Judge et al., 1982) are that the 

least squares estimator will, in general, be inefficient, and the regression variance estimate 

biased. Thus, to improve efficiency of estimate, and at the same time to reduce regression 

variance bias, Models 5.8 and 5.9 are modified: 

Ct = ~nï) + PkTt(Tt-T) + pk„et-i + Tit ' (5 5) 

Q = F(o^„) + a,,„(m,-m) + Pk„(T,-T) + p£,_,+T1, ,and (5.6) 

C t  =  F ( a ' )  +  a ^ , , ( m . - m )  +  p ^ „ ( T , - T )  +  p , + T 1 ,  .  ( 5 . 7 )  



www.manaraa.com

93 

Again, the Black-Scholes assumption is double checked by testing Model 5.5 against 

Model 5.7 (and also Model 5.8 against Model 5.9). This time, however, the independence 

assumption of market option prices is relaxed. The most interesting part of testing the 

systematic mispricing of the Black-Scholes is the test between Models 5.5 and 5.6. If the 

former is statistically favorable, then another kind of systematic correlation of option price 

with option position arises. That is, the unobserved variation, that is left over after extracting 

the expiration effect and the exercise opportunity from market option price, is related 

systematically to option positions. Rubinstein (1985) considered this phenomenon evidence 

that a composite model should be built. Furthermore, the bias observed in any period should 

be correlated with the level of certain macroeconomic variables such as stock-market price 

levels, volatilities, and interest rate levels. 

Because Model 5.5 contains a great number of parameters that need to be estimated, 

convergence of the model depends upon the number of observations in each option position, 

as well as upon the total number of observations. After Model 5.5 is applied to GE, GM, 

IBM, ATT, AVON, and COKE options, only options based on the first three underlying 

securities yield convergent results. The total number of observations of GE, GM, and IBM 

options are 3,712, 3,422, 25,419, respectively (after the contract volume less than 3 and 

trading time of the first 1,000 seconds after 9:00 a.m. ETS are screened out); options on 

ATT, AVON, and COKE have only 2,797, 2,436, and 1,546 observations, respectively. 

Thus, analysis in this section focuses on GE, GM, and IBM options. 

The general statistics of Models 5.5 through 5.9 for GE, GM, and IBM options are 

summarized in Tables 5.9 through 5.11. According to these tables, the SSE of Model 5.9 is 

ahnost twice that of Model 5.5, whereas the residual degrees of freedom of Models 5.9 and 

5.5 are nearly the same. 
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Table 5.9 General Statistics for GE Options 

Model d.f. (error) SSE MSB D.W. 

5 3676 28.8726 .007854 .9981 2.211 
6 3684 30.3526 .008239 .9980 2.281 
7 3684 29.4915 .008005 .9980 2.205 
8 3685 49.2439 .01336 .9967 0.773 
9 3693 52.2593 .01415 .9965 0.739 

D.W. is the Durbin-Walson test statistics. 

Table 5.10 General Statistics for GM Options 

Model d.f. (error) SSB MSB R' D.W. 

5 3386 25.1367 .007424 .9975 2.254 
6 3394 25.2715 .007446 .9975 2.253 
7 3394 26.5039 .007809 .9974 2.246 
8 3395 39.0085 .01149 .9961 0.828 
9 3403 41.3299 .01215 .9959 0.825 

D.W. is the Durbin-Watson test statistic. 

Table 5.11 General Statistics for IBM Options 

Model d.f. (error) SSB MSB R^ D.W. 

5 25383 319.3292 .01258 .9981 2.321 
6 25391 350.7858 .01382 .9979 2.428 
7 25391 321.6600 .01267 .9981 2.319 
8 25392 600.0923 .02363 .9964 0.725 
9 25400 610.4125 .02403 .9964 0.718 

D.W. is the Durbin-Watson test statistics. 

Thus, the variation of the random component of Model 5.9 seems much greater than that of 

Model 5.5, as indicated by MSB size. Furthermore, Durbin-Watson test statistics shown in 

Tables 5.9 through 5.11 demenstrate that the option prices explained by Models 5.8 and 5.9 

are (positively) serially correlated. This problem vanishes, however, when the ARl process 

is introduced to Models 5.5, 5.6, and 5.7. 
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Given the information in Tables 5.9 through 5.11, the performance of each model 

compared with that of Model 5.5, which is more general, can be examined. Results are 

presented in Table 5.12. The superiority of Model 5.5 to other models, especially to Models 

5.8 and 5.9, is clear because the magnitude of all computed F values is much greater than 

that of the tabulated ones. These differences are enormous when the performance of Model 

5.5 is compared with that of either Model 5.8 or Model 5.9. 

The performance tests between Models 5.5 and 5.7 (the second row of Table 5.12) 

and also between Models 5.8 and 5.9 (these F-computed's are 28.21, 25.25, and 54.59, 

respectively, for GE, GM, and IBM) confirm rejection of the Black-Scholes assumption. The 

most striking result occurs when Model 5.5 is tested against Model 5.6 (the first row of 

Table 5.12). The ARl process also varies across option maturities and/or exercise prices. 

Table 5.12 Examining the Performance of the Alternative Models to Model 5.5 

Model 5 Vs 
Computed F Statistics for Options On 

Tabulated F Test Model 5 Vs 
GE GM IBM 

Tabulated F Test 

Model 6 23.55 2.27 312.55 1.94 
Model 7 9.85 23.02 23.16 1.94 
Model 8 288.18 212.56 2479.72 1.88 
Model 9 175.15 128.31 1361.05 1.67 

At this point, sufficient evidence supports the specifications of Model 5.5, which not 

only best explains the observed market option prices, but also improves the efficiency of 

estimates and reduces the bias of regression variance. The conventional approach, on the 

other hand, ignores the serial correlation of option prices and their correlation with option 

positions. Thus, the coefficient estimates obtained from the conventional approach are biased 

and inefficient, as is the regression variance. 
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The next analysis is based on the estimated coefficients of regression Equation 5.4 (or 

Model 5.5), especially those of striking price and maturity effect. The partial effect of 

striking prices adjusted for mean (m- m) or maturities adjusted for mean (T- f ) across in-

the-money degree, k, and maturity month, x, on market option prices, however, is expressed 

as the linear combination of these coefficients, as shown in Table 5.1, Section 5.2.1. Thus, 

examinations of the systematic deviation of the partial effect of striking price and maturity in 

Tables 5.13 through 5.15 use the format shown in Table 5.1. Additionally, to examine these 

effects as well as the estimated implied volatilities and the coefficients of moving average 

across maturity month and degree-of-moneyness, it is convenient to gather all information in 

the same table. Thus, Tables 5.13 through 5.15 are designed such that each cell in the table 

indicates the position of options, whereas the area inside the cell is divided into four parts, as 

shown in Figure 5.1. The upper left comer of Figure 5.1 contains the estimated implied 

volatility; the upper right and lower left comers represent the partial effect of striking price 

(â irt) and maturity (p respectively. 

PkT 

Figure 5.1 Position of Estimated Parameters 

The estimated serial correlation coefficient (p*) is in the lower right comer of the cell. These 

estimates are perfectly identical to the restricted nonlinear least squares estimation procedure, 

according to which ô^'s are treated as known constants. Thus, when the effect of maturity 

(striking price) is treated as constant, the sign of (ê^J partly reflects the direction of 

mispricing of the Black-Scholes model. The results of these estimates for options on GE in 

March 1990 are presented in Table 5.13. 
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As can be seen in Table 5.13, the estimated implied volatilities of at-the-raoney 

options are quite close to at-the-money near out-of-the-money options but these estimates are 

much smaller than those obtained from the at-the-money near in-the-money options. At-the-

money near in-the-money options provide the greatest estimated implied volatilities, whereas 

out-of-the-money options yield the smallest. The magnitude of the estimated implied 

volatilities decreases as time-to-maturity increases, except in September. 

Keeping time-to-maturity constant, Table 5.13 shows that the effect of striking price 

increases with maturity month. All else equal, however, maturity effect declines with striking 

price. The effect of striking price is greatest for at-the-money options. Out-of-the-money 

options yield the smallest striking-price effect but greatest time-to-maturity effect. 

The serial correlation coefficients increase across maturity month except options 

expiring in May. In-the-money options yield the smallest estimates of these coefficients, 

whereas at-the-money options provide the greatest. 

The estimated implied volatilities, the striking price and maturity effect, and the 

estimated serial correlation coefficients for GM options are reported in Table 5.14. 

According to Table 5.14, the estimated implied volatilities are greatest for the in-the-

money options, whereas the in-the-money near out-of-the-money options yield the smallest 

estimates. The estimated implied volatilities for the at-the-money and the at-the-money near 

in-the-money options are approximately the same. 

The effect of striking price seems to increase with expiration. The at-the-money 

options provide the smallest estimates of the exercise price effect. The effect of time-to-

maturity is negative for the at-the-money near in-the-money and for the in-the-money 

options. In May, the maturity effect is also negative and lowest. This effect becomes greater 

for the short- and the long-maturity options. 
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Table 5.13 The Effect of Striking Price and Maturity: GE Options 

Mature in March April May June September 

.0318* -2.17* .0223* -1.99* .0239* -.87 .0198* -.87 .0234* 1.85* 
(.0049) (.63) (.0042) (.64) (.0042) (.66) (.0038) (.59) (.0039) (.64) 

S/K^0.9 
1.53 .563* .86 .599* 1.26 .235* 3.97* .611* 2.11* .689* 
(.45) (.102) (.55) (.098) (1.11) (.111) (.45) (.097) (.47) (.093) 
.0451* -.42 .0356* -.25 .0372* .87* .0331* 1.38* .0367* 3.60* 
(.0025) (.32) (.0010) (.27) (.0009) (.31) (.0009) (.19) (.0033) (.26) 

0.9<S/KS0.975 
.09 .704* -.58 .739* -.18 .375* 2.53* .752* .68 .829* 
(.15) (.043) (.31) (.034) (.99) (.063) (.36) (.031) (.41) (.029) 
.0449* 1.25 .0355* 1.42* .0370* 2.55* .0329* 3.05* .0365* 5.27* 
(.0026) ' (.68) (.0012) (.68) (.0007) (.72) (.0013) (.67) (.0034) (.74) 

0.975 <S/Ki 1.025 
.20 .792* -.47 .828* -.07 .464* 2.64* .840* .79 .918* 
(.19) (.038) (.30) (.027) (.97) (.058) (.42) (.031) (.44) (.031) 
.0532* -1.32* .0437* -1.15* .0453* -.02 .0412* .48 .0448* 2.70* 
(.0023) (.35) (0012) (.34) (.0013) (.38) (.0016) (.32) (.0034) (.42) 

1.025 < S/K < 1.1 
-.79* .422* -1.47* .459* -1.06 .094 1.64* .471* -.21 .548* 
(.11) (.028) (.29) (.030) (.99) (.063) (.39) (037) (.37) (.040) 

.0509* -.43* .0414* -.25 .0429* .87 .0388* 1.37 .0425* 3.59* 
(.0040) (.17) (.0031) (.24) (.0030) (.32) (.0031) (19) (.0046) (37) 

S/K l̂.l 
-1.11 .404* -1.78* .441* -1.38 .076 1.33* .453* -.52 .530* 
(.21) (.059) (33) (.062) (1.01) (.082) (.41) (.061) (.37) (.062) 

* The estimated parameter is significantly different from zero at 95% confidence level. 
The number in () is the systemptotic standard deviation. 
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Table 5.14 The Effect of Striking Price and Maturity: GM Options 

Mature in March April May June September 

.0586* -.35 .0648* .29 .0969* 3.25* .0890* 2.76* .0959* 5.59* 
(.0115) (.67) (.0116) (.76) (.0116) (91) (.0124) (.85) (.0094) (.80) 

S/K^0.9 
-.44 .629* -1.65* .598* -3.83 .541* -3.27* .592* -2.03* .428* 
(.62) (.107) (.67) (.108) (2.08) (151) (81) (.106) (.44) (.093) 

.0204* -3.49* .0266* -2.85* .0587* .11 .0508* -.39 .0577* 2.45* 
(.0046) (.46) (.0027) (.42) (.0031) (.58) (.0033) (.41) (.0091) (.58) 

0.9<S/K^0.975 
1.03* .795* -.17 .764* -2.35 .707* -1.79* .758* -.55 .594* 
(.25) (.049) (.36) (.050) (20% (111) (.49) (.046) (.63) (.058) 

.0421* -7.81* .0482* -7.16* .0803* -4.21* .0725* -4.70* .0793* -1.87* 
(.0036) (.80) (.0016) (78) (.0023) (.89) (.0032) (.76) (.0092) (.78) 

0.975 <S/K S 1.025 
-.04 .726* -1.25* .695* -3.43 .639* -2.86* .689* -1.63* .526* 
(.18) (.030) (.34) (.038) (2.02) (.114) (.47) (.036) (.55) (.055) 

.0473* -1.55* .0535* -.89 .0856* 2.05* .0778* 1.56* .0846* 4.39* 
(.0041) (.58) (0023) (.49) (.0023) (.68) (.0031) (.51) (.0093) (.70) 

1.025 <S/ K <  1.1 
-1.09* .595* -2.29* .564* -4.48* .507* -3.91* .558* -2.68* .394* 
(.12) (.025) (.29) (.032) (2.02) (.114) (.48) (.034) (.56) (.059) 

.1357* -2.54* .1418* 1.89* .1739* 1.06 .1661* .57 .1729* 3.39* 
(.0138) (.45) (.0137) (.42) (.0139) (.63) (.0147) (.46) (.0162) (.66) 

S/KSl.l 
-3.54* .606* -6.93* .575* -6.93* .518* -6.36* .569* -5.13* .406* 

(.44) (.041) (2.05) (.045) (2.05) (.118) (.67) (.045) ( 5 8 )  (.065) 

* The estimated parameter is significantly different from zero at 95% confidence level. 
The number in () is the systemptotic standard deviation. 
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Table 5.15 The Effect of Striking Price and Maturity: IBM Options 

Mature in March Apri! May July October 

.0561* -1.77* .0358* .54* .0346* 2.69* .0402* -.02 .0534* .12 

&k309 
(.0023) (24) (.0023) (.19) (.0024) (.33) (.0024) (.26) (.0042) (.38) 

-.92* .254* .46 .656* 9.81* .658* -1.46* .656* -2.94* .629* 
(.36) (.130) (.42) (129) (.89) (.130) (.39) (.129) (.58) (.129) 
.0484* .05 .0282* 1.28* .0269* 4.52* .0325* 1.81* .0457* 1.94* 

0.9<s/ks0.975 
(.0006) (.19) (.0004) (.18) (.0008) (.31) (.0008) (.17) (.0036) (.28) 

.37* .555* 1.75* .957* 11.11* .959* -.16 .957* -1.64* .931* 
(.12) (.012) (.27) (.007) (.82) (.009) (.19) (.008) (.52) (.010) 
.0373* -.86* .0171* .38* .0159* 3.61* .0214* .89* .0346* 1.03* 

0.975 <s/ki 1.025 
(.0005) (18) (.0006) (.16) (.0009) (.32) (.0009) (.24) (.0036) (.38) 

-.42* .591* .96* .993* 10.31* .995* -.96* .993* -2.44* .966* 
(.08) (.010) (.25) (.002) (.83) (.006) (.20) (.004) (.52) (.009) 
.0524* .92* .0321* 2.15* .0309* 5.39* .0365* 2.67* .0496* 2.81* 

1.025 <s/K< 1.1 
(.0005) (.12) (0002) (.08) (.0007) (.29) (.0007) (.19) (.0036) (.35) 

-.03 .231* 1.35* .632* 10.71* .635* -.56* .632* -2.04* .606* 
(.07) (.009) (.24) (.009) (.82) (oil) (.17) (.009) (48) (.012) 
.0617* -.42* .0414* .82* .0402* 4.05* .0458* 1.34* .0589* 1.47* 

s/ksl.l 
(.0016) (14) (.0016) (.09) (.0017) (.29) (.0016) (17) (.0039) (.35) 

-.57* -.005 .81* .396* 10.17* .399* -1.10* .396* -2.58* .369* 
(.19) (.035) (.28) (.033) (.84) (.034) (.19) (.034) (.49) (.035) 

* The estimated parameter is significantly different from zero at 95% confidence level. 
The number in ( ) is the systemptotic standard deviation. 



www.manaraa.com

101 

Serial correlation coefficients seem to decline as maturity increases, and the at-the-

money near out-of-the-money options yield the greatest estimates. 

The estimated implied volatilities, the striking price and maturity effect, and the 

estimated serial correlation coefficients for IBM options are reported in Table 5.15. 

According to this table, estimates of implied volatilities are smallest in May and become 

greater for the longer and the shorter maturity options. With respect to degree-of-moneyness, 

these estimates are smallest at at-the-money and increase as options become in- or out-of-

the-money. 

The striking price effect is greatest and positive for options maturing in May. The 

March options yield the smallest estimates of the striking-price effect. The effect of time-to-

maturity is greatest in positive value for the May options and declines as maturity becomes 

either shorter or longer. The maturity effect is approximately the same for the at-the-money 

and the in-the-money options. 

The estimated coefficients of serial correlation are greater for longer maturity 

options. These estimates are greatest for the at-the-money options and decrease as options 

become in- or out-of-the-money. 

Given the infomiation in Tables 5.13 through 5.15, the mean of the deviation 

between observed and model option prices, F(.), for options on GE, GM, and IBM can be 

computed across degree-of-moneyness and maturity month. Because the estimated 

coefficients of Model 5.5 must be identical to those from the restricted nonlinear least 

squares procedure when , 0;, and * j are substituted by their optimal value, the mean of 

the deviation between observed and model price, 

can be estimated by 

+ PkTt(Tt-T) • 
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Thus, on average, the magnitude of the mispricing of the model price across option positions 

is computed by averaging these terms across k and x. That is, for k and x = 1, 2,..., 5 the 

mispricing of the model price is measured as 

+ . (5.10) 

where m^^ and T^^ are means of m and T across k and x, respectively. 

The mispricing of the model price, F(.), as measured by the Expression 5.10 for 

options on GE is reported in Table 5.16. According to this table, the average mispricing for 

all June and most September options is positive. Thus, on average, the model underprices GE 

options whose maturities are medium to long. Furthermore, Table 5.16 also indicates 

strongly that, on average, the at-the-money near in-the-money and the in-the-money options 

with short maturities also are overvalued compared with the model price (given that the 

Black-Scholes function, F(.), is corrected). Additionally, the model correctly prices the most 

at the-money short maturity options. Thus, the striking price bias for the GE options is such 

that the at-the-money near in-the-money and the in-the-money options are overpriced. On the 

other hand, the maturity bias is such that the medium to long maturity options also are 

overpriced. 

According to previous empirical studies, for example MacBeth and Merville (1979), 

Whaley (1982), Gultekin, Rogaski, and Tinic (1982), and Levy and Byun (1987), striking 

price and maturity bias in options written on a certain stock share the patterns of those 

options written on other securities. Thus, it is expected that the striking price and the 

maturity biases of GM and IBM options would have basically the same direction as those of 

GE options. Nevertheless, results for GM and IBM options disagree with those of previous 

research. 
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Table 5.16 The Systematic Deviation of Market and Model Prices: GE Options 

Mature in March April May June September 

.028 .443* .603* 
S / K  s  0 . 9  (.057) N / A  N / A  (.083) (.187) 

.006 .043* -.052* .172* .126 
. 9 <  S / K  a . 9 7 5  (.021) (.019) (.021) (.029) (.144) 

..017 .021 -.014 .192* .432* 
.975 < S/K s 1.025 (.029) (.024) (.013) (.030) (.146) 

.067* .034* .016 .182* .186 
1.025< S/K< 1.1 (.008) (.016) (.029) (.039) (.115) 

.093* .074* .369* .411* 
S / K s  1 . 1  (.015) (.031) N / A  (.034) (.112) 

"The estimated parameter is significantly different from zero at 95% confidence level. 
The number in ( ) is the asymptotic standard deviation. 
N/A, not applicable, indicates that there is no option sample to compute the mean of m and T in the cell. 

The systematic mispricing of GM options is presented in Table 5.17. The means of 

the mispricing of June and September options all are significantly negative. The direction of 

maturity bias of the medium to long maturity GM options therefore is opposite that of the 

maturity bias of GE options. Furthermore, the at-the-money short maturity GM options are 

overpriced, whereas the same GE options are priced close to the model value. As maturity 

increases, mispricing mean becomes increasingly negative. The at-the-money (.9 < S/K < 

1.1) short maturity options are, on average, overvalued. 

For IBM options, as reported in Table 5.18, medium to long maturity options are, on 

average, underpriced, a result similar to that for GM options. But the direction of mispricing 

for the at-the-money short maturity IBM options is quite different from that of mispricing for 

the same GE or GM options. The at-the-money near out-of-the-money IBM options whose 

maturities are short are underpriced, whereas the at-the-money near in-the-money options are 

overpriced. Additionally, the at-the-money IBM options maturing in March are, on average, 

overpriced, whereas the at-the-money April options are undervalued. 
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Table 5.17 The Systematic Deviation of Market and Model Prices: GM Options 

Mature in March April May June September 

.107 -.712* -1.309* 
S / K s  0 . 9  (.068) N / A  N / A  (.174) (.195) 

.218* .229* -.002 -.135* -.359 
. 9 <  S / K s . 9 7 5  (.040) (.029) (.048) (.058) (.244) 

.044* .027* -.011* -.321* -.649* 
.975< S/Ks 1.025 (.022) (.011) (.002) (.050) (.203) 

.119* .122* .018 -.293* -.724* 
1.025< S/K< 1.1 (.009) (.019) (.021) (.042) (.186) 

.124* -.022 -.556* -1.428* 
S / K a  1 . 1  (.017) (.045) N / A  (.113) (.206) 

"The estimated parameter is significantly different (torn zero at 95% confidence level. 
The number in ( ) is the asymptotic standard deviation. 
N/A, not applicable, indicates that there is no option sample to compute the mean of m and T in the cell. 

In the empirical tests of option mispricing, within each study, the bias with respect to 

exercise price or time-to-maturity always exhibited a consistent pattern, regardless of the 

underlying security. These biases typically fall into one of three categories. 1) In-the-money 

(out-of-the-money) model estimates tend to be higher (lower) than market prices. Black 

(1975), Gultekin et al. (1982), and Stark (1983) report these striking price biases. 2) In-the-

money (out-of-the-money) model estimates tend to be lower (higher) than market prices. 

MacBeth and Merville (1979, 1980) report these striking price biases. 3) Model estimates 

tend to be lower than market prices for near-to-maturity options, according to Black (1975) 

and Whaley (1982). 

Model 5.5 and the foregoing criteria indicate that neither striking price nor maturity 

bias seems systematic across underlying stock. The same conclusion is applied for the 

estimated implied volatilities and for the serial correlation coefficients. But a certain 

underlying stock indicates that the mispricing of the Black-Scholes model is not negligible 

even though the model price has been adjusted for the instability of the estimated implied 
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volatility and for the possibility of serial correlation among option prices, for all option 

classes. The bias patterns of option samples is summarized next. 

• Maturity bias for GM and IBM options is such that the medium to long 

maturity options are undervalued. But this bias direction is reversed for GE options. 

Furthermore, the short maturity GE and GM options tend to be overpriced. 

• Striking price bias for GE options is such that the at-the-money near in-the-

money and the in-the-money options are overvalued. 

Table 5.18 The Systematic Deviation of Market and Model Prices: IBM Options 

Mature in March April May June September 

.061* .075 -.302* -1.359* 
S / K s  0 . 9  N / A  (.023) (.041) (.092) (.275) 

-.033* -.077* .241* -.095* -.830* 
. 9 <  S / K s . 9 7 5  (.0009) (.008) (.031) (.046) (.256) 

.033* -.015* .416* -.209* -1.161* 
.975< S/Ks 1.025 (.007) (.004) (.034) (.047) (.249) 

.047* .095* .707* .065 -.753* 
1.025< S/K< 1.1 (.003) (.005) (.043) (.038) (.227) 

.002 .108* -.038* 
S / K a  1 . 1  (.013) (.012) N / A  (.043) N / A  

*'nie estimated parameter is significantly different fcom zero at 95% confidence level. 
The number in ( ) is the asymptotic standard deviation. 
N/A, not applicable, indicates that there is no option sample to compute the mean of m and T in the cell. 

Moreover, empirical studies usually use the at-the-money implied volatility as the estimate 

for the anticipated volatility of the stock rate of return because the estimates seem stable over 

option maturity, especially when time-to-maturity is at least 90 days to expiration. 

Our study shows, however, that within the class of the at-the-money itself (the at-the-

money near in- or out-of-the-money or the most at-the-money), the estimated implied 

volatilities do differ. Thus, no one estimated implied volatility seems suited to explaining the 



www.manaraa.com

106 

pricing behavior of the whole series of option prices. For example, the estimated implied 

volatilities of the most at-the-money and the at-the-money near in-the-money GM options 

(see Table 5.14) are twice the estimated implied volatilities of the at-the-money near out-of-

the-money options. Furthermore, the mispricing behavior of the at-the-money short maturity 

options also are different. As can be seen from Table 5.18, the direction of the mispricing of 

the at-the-money near in- and out-of-the-money is perfectly opposite. 

5.4 Robust Model Vs Conventional Approaches 

Previous studies used two main approaches to examine the systematic mispricing of 

the Black-Scholes model option price. The first applies regression techniques by regressing 

the deviation between the market and the Black-Scholes model price on the extent to which 

option is in- or out-of-the-money (m) and/or the time-to-maturity (T) of the option contract. 

The other directly computes the mean of the difference between the market and the model 

price across moneyness degree and expiration month. Because Model 5.5 represents the 

relation between the mispricing and the extent to which option is in- or out-of-the-money 

and also the time-to-maturity across maturity month and degree-of-moneyness, the model is, 

in fact, a combination of the two approaches. 

As mentioned in Section 5.2.2, regressing the option residual on variables affecting 

the option market price biases the coefficient estimates. The consequences of using least 

squares when disturbances are autocorrelated are that the least squares estimator will, 

generally, be inefficient and the estimate of the regression variance biased. Thus, a 

meaningful conclusion regarding the effect of striking price and maturity is drawn with 

difficulty from the regression approach (for details, see Johnston, 1984 and Judge et al., 

1982). 
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The first part of this section will discuss the problem facing the simple regression 

technique, a problem arising from the model, namely the inability to distinguish option with 

respect to degree-of-moneyness (or maturity month). This problem may lead to 

misinterpretation of regression results. The second part of this section will discuss the 

disadvantages of the second approach. 

Consider the results obtained by regressing the difference, R, between observed and 

model option prices of GM options on the extent to which option is in- or out-of-the-money, 

m, and also on m and time-to-maturity, T. In such an instance, the optimal values of the 

implied volatilities of Model 5.5 are used to proxy the implied volatilities. 

R = - .083 + .280 m, 
(.006) (.090) D.W. = .112 

R = .225 - .933 m - 1.801 T, 
(.005) (.054) (.022) D.W. = .282 

where the numbers in parenthesis are standard deviations of coefficient estimates. 

The first regression results suggest that as options go in-the-money, mispricing 

increases. It is expected that, on average, the in-the-money options will be overpriced. These 

results contradict the findings in Table 5.17. From the table, the average mispricing with 

respect to degree-of-moneyness can be calculated by multiplying each number in the table by 

its corresponding number of observations and by averaging out across maturity months. 

These averages are presented in Table 5.19, in which the number beneath the average 

mispricing in each cell is the number of observations in that cell. From the table, the majority 

of market option prices, including in-the-money options, are underpriced. The plot of 

residuals supports this bias pattern, as shown in Figure 5.2. 

The second regression results also mislead the direction of bias exhibited in the GM 

options. The model states that by keeping the effect of time-to-maturity constant, model 

prices tend to be greater than market prices as options go in-the-money. Because each 



www.manaraa.com

108 

column of Table 5.17 (or Table 5.19) represents the average mispricing across striking price 

by fixing maturity month (which also reflects time-to-maturity), it is expected from the 

regression results that average mispricing in each column decreases as stock-to-exercise-

price ratio increases. Consider Figure 5.3 which is the plot of average mispricing against 

degree-of-moneyness (k) at different levels of maturity month. The figure indicates that only 

June and September options tend to be underpriced as striking price increases. 

Table 5.19 The Average Mispricing Across Maturity Months: GM Options 

Mature in March April May June Sept Average 

S / K s  0 . 9  
.107 
2 N / A  N / A  

-.712* 
49 

-1.309* 
58 

-1.04 

. 9 <  S / K Ê . 9 7 5  
.218* 
25 

.229* 
287 

-.002 
45 

-.135* 
352 

-.359 
150 

-.035 

.975 < S/Ks 1.025 1
1
 

.027* 
171 

-.011* 
12 

..321* 
230 

-.649* 
107 

-.123 

1.025 < S / K < 1.1 
.119* 
603 

.122* 
369 

.018 
34 

-.293* 
195 

-.724* 
8 

.045 

S / K >  1 . 1  
.124* 

148 
-.022 

43 N / A  
-.556* 

52 
-1.428* 

32 
-.21 

*The estimated parameter is significantly different from zero at 95% confidence level. 

c-m 

1 T 

-2 

Figure 5.2 The Mispricing of GM Options 
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Figure 5.3 The Average Mispricing of GM Options Across Degree of-Moneyness 

Although these options represent only 36% of GM option samples, they influence the slope 

of the entire regression line. Thus, the inability of the simple regression technique to identify 

options across both striking price and maturity may make regression results unrealistic. 

Another approach used by most studies to analyze option mispricing is that of 

directly classifying options according to maturity month and degree-of-moneyness and then 

computing average mispricing. That is, this technique calculates 

I(C»„-F,(Ô;,)) 

for k = 1,2,...,5; and t = 1,2,...,5; t = l,2,...,Tkx. The technique has included the unexplained 

random component in the average mispricing. If, on average (across k, and x), the random 

component has a zero mean and the effects of striking price, maturity, and model price, F(.), 

are orthogonal, then the directions of mispricing from this approach and from those of Model 

5.5 may be the same. But the precision of estimates obtained from this approach is less than 

that obtained from Model 5.5. In other words, the standard deviation of the average 

mispricing from this approach is expected to be greater that of the robust model. As can be 
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seen from Table 5.20, the direction of mispricing agrees with results in Table 5.17. But the 

standard deviations of the estimates (other than the out-of-the-money September, and the 

out-of-the-money near in-the-money March options, which represent only 13% of the entire 

sample) obtained from this approach are much greater than those in Table 5.17. 

Table 5.20 The Systematic Deviation of Market and Model Prices of GM 
Options Obtained from the Average Mispricing Approach 

Mature in March April May June September 

.043* -.806* -1.309* 
S / K s  0 . 9  (.013) N / A  N / A  (.045) (.144) 

.065* .219* -.057 -.109 -.369 
. 9 <  S / K s . 9 7 5  (.012) (.047) (.089) (.0805) (.092) 

.045 .042 .040 -.337* -.637* 
.975 < S/Ka 1.025 (.117) (.105) (.073) (.120) (.118) 

.120 .120 .026 -.294 -.720* 
1.025< S/K< 1.1 (.125) (.114) (.075) (.155) (.117) 

.108 -.024 -.493* -1.449* 
S / K a  1 . 1  (.127) (.201) N / A  (.200) (.095) 

*The estimated parameter is significantly different from zero at 95% confidence level. 
The number in ( ) is the asymptotic standard deviation. 
N/A, not applicable, indicates that there is no option sample to compute the mean of m and T in the cell. 

5.5 Graphical Performance of Robust vs Black-Scholes Model 

The test statistics in Table 5.12 indicate clearly the superiority of Model 5.5 to other 

models designed to reduce residual sum of squares. Furthermore, the ability of the model to 

identify the mispricing behavior of the Black-Scholes function is quite impressive compared 

with that of the two conventional approaches. Yet these results do not confirm that the 

difference between the observation and the prediction of Model 5.5 exhibits no systematic 

pattern with respect to exercise price (m) or time-to-maturity (T). It, therefore, would be of 
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interest to investigate whether Model 5.5 systematically over- or underprices options across 

option positions. 

Actually, the construction of Model 5.5 and the estimation technique used in the 

study guarantee that the residuals of Model 5.5 are orthogonal to Zj.m, Wj.m, Zj.T, and Wj.T. 

Thus, theoretically, the residuals of Model 5.5 scatter around zero at any level of m and T. 

Furthermore, because the SSE of Model 5.5 is much smaller than that of the Black-Scholes 

model, the residuals from Model 5.5 should be closer to zero than is the deviation of the 

actual and the Black-Scholes model prices. 

The computation of the Black-Scholes model price in this section follows the 

standard approach. That is, the at-the-money implied volatility is used as the proxy for the 

variance rate of stock return and substituted into the Black-Scholes formula. These estimates 

are .038994, .05269, and .033622 for GE, GM, and IBM options, respectively. 

The residual plots^ of Model 5.5 against both m and T in Figures 5.4 through 5.39 

suggest the absence of systematic bias of Model 5.5 in predicting call option prices at any 

level of m and T as expected for all option samples. Furthermore, variations in the residuals 

are much smaller than those in prediction errors of the Black-Scholes model. On the other 

hand, the Black-Scholes model tends to underestimate the deep in- and the deep out-of-the-

money options (m < -0.1 and m > 0.1, respectively). But when m assumes a value between 

-0.1 and -0.05, options seem undervalued, and this pattern seems to reverse when m has a 

value of between 0.05 and 0.1. This mispricing behavior mimics the findings of MacBeth 

and Merville (1979), except that their samples consist of only options whose degree of in-

the-money (m) is approximately greater than -0.1. The maturity bias is weaker than the 

striking-price bias. 

® Because the computer software allows at most 4,000 samples to be plotted in the same graph, each plot for 
the IBM options contains 4,000 observations, except in Figures 5.24, 5.25, 5.38, and 5.39. These four plots 
contain the remainder of the data, or 1,419 options. 
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Figure 5.4 Deviation of the Observed from the BS Model Prices against m (GE) 
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Figure 5.5 Residuals of Model 5 against m (GE) 
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Figure 5.6 Deviation of the Observed from the BS Model Prices against T (GE) 
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Figure 5.7 Residuals of Model 5 against T (GE) 
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Figure 5.8 Deviation of the Observed from the BS Model Prices against m (GM) 
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Figure 5.11 Residuals of Model 5 against T (GM) 
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Figure 5.12 Deviation of the Observed from the BS Model Prices against m (IBM) 



www.manaraa.com

115 

RESIDUALS 

0.6 

0.4 

I ^ m 
"M -0.16 -0.14* -0.12 

-0.2 

-0.4 

-0.6 

-0.8 

Figure 5.13 Residuals of Model 5 against m (IBM) 
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Figure 5.19 Residuals of Model 5 against m (IBM) 
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Figure 5.22 Deviation of the Observed from the BS Model Prices against m (IBM) 
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Figure 5.23 Residuals of Model 5 against m (IBM) 
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Figure 5.24 Deviation of the Observed from the BS Model Prices against m (IBM) 
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Figure 5.25 Residual of Model 5 against m (IBM) 
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Figure 5.30 Deviation of the Observed from Figure 5.31 Residuals of Model 5 
BS Model Prices against T (IBM) against T (IBM) 
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Figure 5.32 Deviation of the Observed from Figure 5.33 Residuals of Model 5 
BS Model Prices against T (IBM) against T (IBM) 
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Figure 5.35 Residuals of Model 5 
against T (IBM) 



www.manaraa.com

121 

ACTUAL -BLACK4SCHOLES RESIDUALS 

0.6 •» 

75 0.225 0.275 

T 0.2 

175 0.225 0.275 

Figure 5.36 Deviation of the Observed from Figure 5.37 Residuals of Model 5 
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Figure 5.38 Deviation of the Observed from Figure 5.39 Residuals of Model 5 
BS Model Prices against T (IBM) against T (IBM) 

To confirm the results of residual plots, the prediction of Model 5.5 and the actual 

call price within the range of option samples are plotted against the number of observations 

in Figures 5.40, 5.42, 5.44, 5.46, 5.48, 5.50, and 5.52. The plots of the Black-Scholes (BS) 

model and the actual call price also are presented in Figures 5.41, 5.43, 5.45, 5.47, 5.49, 

5.51, and 5.53, after the plot of Model 5.5 only for GE options. Because the option samples 

are ordered by degree-of-moneyness first and by maturity month next, the systematic over-

or underpricing of the Black-Scholes price across option positions can be observed easily 

from the plots. On the other hand, the prediction of Model 5.5 is more closely related to 

observed call value than that of the Black-Scholes price. 
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Figure 5.42 Actual and Model 5.5 Predicted Option Prices 
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Figure 5.43 Actual and Black-Scholes Predicted Option Prices 
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Figure 5.44 Actual and Model 5.5 Predicted Option Prices 
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Figure 5.45 Actual and Black-Scholes Predicted Option Prices 
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Figure 5.46 Actual and Model 5.5 Predicted Option Prices 
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Figure 5.48 Actual and Black-Scholes Predicted Option Prices 
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Figure 5.49 Actual and Black-Schoies Predicted Option Prices 
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Figure 5.50 Actual and Model 5.5 Predicted Option Prices 
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Figure 5.51 Actual and Black-Scholes Predicted Option Prices 
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Figure 5.53 Actual and Black-Scholes Predicted Option Prices 

Although various problems faced by the conventional analysis have been detected in 

the study by using Model 5.5, Section 5.4 shows that the Black-Scholes model price with 

flexible implied volatilities still exhibits pricing biases with respect to maturity and to 

exercise price. These biases, however, are inconsistent across underlying securities. But from 

the residual plots, the striking-price bias of the Black-Scholes model price with constant 

estimated implied volatility seems systematic for all stocks considered. These findings can be 

confirmed by computing the average mispricing of Model 9. In doing so, the results indicate 

strongly that, for all underlying securities, the out-of-the-money short maturity and also the 

in-the-money options are overpriced significantly. Thus, how the implied volatility is entered 

into the model has great impact. If only one estimated implied volatility is used to explain 
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the option data, the model likely will exhibit a systematic striking-price bias for all 

underlying securities, as found by many researchers including Black (1975), MacBeth and 

Merville (1979), Gultekin et al. (1982), Sterk (1983), and Levy and Byun (1987). If various 

estimated implied voltilities are used, however, the striking-price bias may not be systematic 

across underlying securities, as found in this study and also in Whaley (1982). Nevertheless, 

the performance of Model 5.5 itself in predicting market option prices is quite impressive. 

The model eliminates totally any systematic mispricing that exists in the Black-Scholes 

model price at any maturity level or exercise price. 
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CHAPTER 6. PREDICTING OPTION PRICES 

The robust model presented in the previous chapter is very useful for investigating 

the mispricing of the Black-Scholes model. The model expresses the market option price as a 

function of the Black-Scholes model price, striking price, and maturity. These last two 

arguments determine the direction of the mispricing which can be either positive or negative. 

If the mispricing is in the negative direction and also dominates the Black-Scholes model 

price, then the predicted price will be negative. Thus, an attempt to use the model of Chapter 

5 to predict the price of a short maturity out-of-the-money option may produce a negative 

option price. 

Another problem with the model of Chapter 5 is the discontinuity of the dummy 

variables used to describe the degree-of-moneyness and time-to-maturity. As the result of the 

discontinuity, the predicted option prices from the model will exhibit a jump from one 

category to another. In this chapter, we will construct a model for predicting option prices 

that maintains the basic structure of the robust model of Chapter 5 but does not have the two 

described undesirable properties. 

Our objective is to construct a function that permits the option price to deviate from 

the Black-Scholes price, where the deviation is a smooth function of time-to-maturity, T,, 

and degree-of-moneyness, m,. Also, the predicted prices should always be nonnegative. A 

common procedure to guarantee a positive function, and the one we adopt, is to work with 

exponential functions. 

We first define functions of m, and T, that we will use in our model. Let 
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=  H  f o r l m , l < 0 . 1  

[0.01 +0.2[lin,l -O.Il for lm,l >0.1 

and 
0 for T, >% 

T2t = -(T. -%)' for % <T, <X, (6.2) 

(T, -%)' +2(T, -%)(T, -%) for T, >% 

where T, and T4 are the average time-to-maturity of the option contracts that mature in 

maturity months t  = 3 and 4, respectively. 

The functions and are closely related to the quadratic function, they are 

continuous, and they have continuous derivatives. The values used to define and T;, 

separate options into nine groups. With respect to striking price, options are separate into 

three groups; the out-of-the-money (m^ < - 0.1), the at-the-money (ImJ < 0.1), and the in-

the-money (m, > 0.1) options. With respect to time-to-maturity, options are also classified 

into three groups; the short (T, < T3), medium (T3 < T, < %,), and long maturity (T, > X»). 

Notice that the function (6.1) is linear except when m, is at-the-money. The function (6.2) is 

linear except for maturities in the medium time-to-maturity range. The three values of T3 are 

0.154, 0.159, and 0.150 for GE, GM, and IBM, respectively. The three values of are 

0.253, 0.254, and 0.345 for GE, GM, and IBM^ respectively. 

Including the effects of striking price and time-to-maturity, our model for market 

option price is 

^ •'^2^21 "^Tl ™lt g (6 3) 

fit = pfit-l ' 

where F(a^) is the Black-Scholes function, m,, = m, , and T^ = T, - ^ . This model 

contains the autoregressive representation for the errors introduced in Chapter 5. For this 

model, can be considered to represent the implied volatility of the at-the-money short 
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maturity options because m^ , and are all equal to zero for these options. The 

effect of a change in striking price, or of a change in time-to-maturity for each option class 

can be found by substituting the definition of the explanatory variables into Equation 6.3. 

For simplicity, consider only the exponent 

g(m„T,) = a.m,, +71 f-yzm^T;, . (6.4) 

In the class of at-the-money short maturity options, m;, = mf , and T^, = 0 , and the 

exponent 6.4 is 

« i m t  H - o i j m f  + / 3 i T n  + 7 1  m ^ ,  T ^ , .  

Thus, for these options, the percentage change in option prices due to the change in the 

extent to which option is in-the-money is measured byo^. The parameter, a 2, measures the 

rate of change of option prices with respect to m, . The percentage change in option prices 

due to the change in the time-to-maturity is measured by jSj. The parameter, "y, , determines 

the interaction between m, and T^ in percentage terms. Table 6.1 contains the coefficients of 

m,, mf, Tu , T^ , m^T^ , and m^T^ for the nine option classes. 

6.1 Estimation and Prediction Results 

It was decided to withhold a part of the data from the estimation to serve as a check 

on the predictive ability of the model. Since the data used in the study are limited, we 

removed only the last five observations in each option class for the prediction check. The 

model is estimated based on the rest of the data. The method for obtaining predictions is 

adapted from Fuller (1980). 

Model 6.3 was fitted by the SYSNLIN procedure in SAS/ETS. The estimation results 

for GE, GM, and IBM options are reported in Table 6.2. 
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Table 6.1 The Effects of Striking Price and Time-to-Maturity 

Option Class m, Tu Tii m,T„ 

At-the-Money 
Short Maturity 

«1 «2 Pi 0 Y l  0 

In-the-Money 
Short Maturity 

a 1 + 0.2a 2 0 Pi  0 Y l  0 

Out-of-the-Money 
Short Maturity 

ct 1 — 0,2o( 2 0 Pi  0 Y l  0 

At-the-Money 
Medium Maturity 

" i  " 2 Pi  P2 Y l  Y 2  

In-the-Money 
Medium Maturity 

a , + 0.2o 2 0 Pi  p2 Y l  Y2 

Out-of-the-Money 
Medium Maturity 

ct 1 - 0.2ot 2 0 Pi  p2 Y l  Y2 

At-the-Money 
Long Maturity 

"l ~ T2(Xt - «2 Pi  + 2^2(^4 ~ ^3) 0 Y l  +  Y 2 +  2(T4 -  T3) 0 

In-the-Money 

Long Maturity 

a ]+ .2o (2  

- Y 2(^4-
0 Pi + 2^2(^4- T3) 0 Y l  + Y 2 +  2(74- T3) 0 

Out-of-the-Money 

Long Maturity 

0 J— ,2ot 2 

- Y 2(^4 - 0 Pi  + 2P2(T4- T3) 0 Y1 + Y2 + 2(T4 - T3) 0 

According to the statistics reported in Table 6.2, the estimated parameters that are 

significantly different from zero have the same sign in all three equations. To this extent, the 

results are consistent for the three securities. 

The coefficient of T;, , denoted by , is significant for none of the securities. 

However, , the interaction of m, with T;^ , is significant in two of the three equations. 

Therefore, there is a significant nonlinear effect associated with time-to-maturity. 

Recall that the variable T^^ is a grafted polynomial. It is quadratic for part of the 

medium maturity and linear for part of the short and long maturity. The coefficients of m, , 

mf, Ti,, Tj^t, m,!^;, and m^T,^ for any degree-of-moneyness and maturity all can be found 

by substituting the values of the estimated parameters of Table 6.2 into the appropriate 
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function in Table 6.1. The results are reported in Tables 6.3-6.5. The direction of the 

percentage changes (and the rate of the changes measured by the second power terms) in the 

market option price due to the changes in the extent to which the option is in-the-money and 

time-to-maturity (including the interactions) are almost identical for GE and IBM options. 

However, the direction of the percentage changes of the GM market prices is negative with 

respect to the increases in time-to-maturity, especially for long maturity options. In addition, 

the in-the-money long maturity GM options have a negative striking price effect. The effects 

of striking price (except for the in-the-money long maturity GM options), are similar for all 

option classes. Based on Model 6.3, neither the striking price nor maturity effect seems to be 

systematic across stocks. The results support the findings of the previous chapter that the bias 

patterns of the three securities are not the same (see also page 110). 

Table 6.2 Summary Statistics for all Options 

Parameter 
GE GM I BM 

Parameter Estimate App. Std^ Estimate App. Std® Estimate App. Std^ 

.038* .0003 .051* .0005 .033» .0001 
«1 .823» .0596 1.153» .0679 .595» .0215 
«2 -4.253» .3537 -6.51* .4795 -3.366» .1421 
Pi .084» .0317 -.059 .0390 .044» .0138 

P2 .391 .2240 -.306 .2710 -.065 .0623 

7l .369» .1591 1.225» .3123 .775» .1415 
72 -5.171» 1.4311 -3.240 2.2737 -4.488» .7390 
P .722» .0115 .661» .0131 .736» .0043 

MSB .0089 .0082 .0147 
d.f. 3609 3309 25301 

R-square .9976 .9971 .9978 
D.W. 2.327 2.291 2.530 

• The estimated parameter is significantly different from zero. 

^ The approximate standard deviation. 
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Table 6.3 The Effects of Striking Price and Time-to-Maturity for GE Options 

Option Class m, T.t T,'t mtTu 

At-the-Money .823 -4.253 .084 0 .369 0 
Short Maturity (.059) (.354) (.032) (.159) 
In-the-Money -.028 0 .084 0 .369 0 
Short Maturity (.021) (.032) (.159) 
Out-of-the-Money 1.674 0 .084 0 .369 0 
Short Maturity (.129) (.032) (.159) 
At-the-Money .823 -4.253 .084 .391 .369 -5.171 
Medium Maturity (.0596) (.354) (.032) (.224) (.159) (1.431) 
In-the-Money -.028 0 .084 .391 .369 -5.171 
Medium Maturity (.021) (.032) (.224) (.159) (1.431) 
Out-of-the-Money 1.674 0 .084 .391 .369 -5.171 
Medium Maturity (.129) (.032) (.224) (.159) (1.431) 
At-the-Money .874 •4.253 .161 0 -4.604 0 
Long Maturity (.060) (.354) (.022) (1.304) 
In-the-Money .023 0 .161 0 -4.604 0 
Long Maturity (.032) (.022) (1.304) 
Out-of-the-Money 1.724 0 .161 0 -4.604 0 
Long Maturity (.128) (.022) (1.304) 

The number in parenthesis is the approximate standard deviation 

Table 6.4 The Effects of Striking Price and Time-to-Maturity for GM Options 

Option class Tu T,'t 

At-the-Money 1.153 -6.57 -.059 0 1.225 0 
Short Maturity (.068) (.479) (.039) (.312) 
In-the-Money -.160 0 -.059 0 1.225 0 
Short Maturity (.037) (.039) (.312) 
Out-of-the-Money 2.467 0 -.059 0 1.225 0 
Short Maturity (.162) (.039) (.312) 
At-the-Money 1.153 -6.57 -.059 -.306 1.225 -3.240 
Medium Maturity (.068) (.479) (.039) (.271) (.312) (2.274) 
In-the-Money -.160 0 -.059 -.306 1.225 -3.240 
Medium Maturity (.037) (.039) (.271) (.312) (2.274) 
Out-of-the-Money 2.467 0 -.059 -.306 1.225 -3.240 
Medium Maturity (.162) (.039) (.271) (.312) (2.274) 
At-the-Money 1.183 •6.51 -.117 0 -1.825 0 
Long Maturity (.068) (.479) (.025) (1.994) 
In-the-Money -.131 0 -.117 0 -1.825 0 
Long Maturity (.054) (.025) (1.994) 
Out-of-the-Money 2.496 0 -.117 0 -1.825 0 
Long Maturity (.159) (.025) (1.994) 

The number in parenthesis is the approximate standard deviation 
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Table 6.5 The Effects of Striking Price and Time-to-IVIaturity for IBM Options 

Option Class mt m? Tu T.'t mtT„ 

At-the-Money .595 -3.366 .044 0 .775 0 
Short Maturity (.022) (.142) (.014) (.142) 
In-the-Money -.078 0 .044 0 .775 0 
Short Maturity (.012) (.014) (.142) 
Out-of-the-Money 1.268 0 .044 0 .775 0 
Short Maturity (.049) (.014) (.142) 
At-the-Money .595 -3.366 .044 -.065 .775 -4.488 
Medium Maturity (.022) (.142) (.014) (.062) (.142) (.739) 
In-the-Money -.078 0 .044 -.065 .775 -4.488 
Medium Maturity (.012) (.014) (.062) (.142) (.739) 
Out-of-the-Money 1.268 0 .044 -.065 .775 -4.488 
Medium Maturity (.049) (.014) (.062) (.142) (.739) 
At-the-Money .765 -3.366 .019 0 -3.323 0 
Long Maturity (.038) (.142) (.013) (.612) 
In-the-Money .092 0 .019 0 -3.323 0 
Long Maturity (.033) (.013) (.612) 
Out-of-the-Money 1.438 0 .019 0 -3.323 0 
Long Maturity (.057) (.013) (.612) 

The Dumber in parenthesis is the approximate standard deviation 

The information in Tables 6.3-6.5 can be used to determine the changes of the option 

prices with respect to the changes in the degree-of-moneyness and time-to-maturity (T^) by 

computing the partial derivatives of the exponent of Equation 6.4 with respect to m^ and T^, 

respectively. The derivatives are computed at (ra, T) = m, Pj + Yi m), (a^ + Q.la^ + 

Yi T, p, + Yi m), (tti - 0.202 +Yi T, p, + Yi m), (a, + 204 m + Yi T + Y2 T\ Pi + 2p2 T + Yi m + 

2y2 mT), (a, + 0.202 4^i T + Y2 T^, Pi + 2P2 T + Yi m + mT), (Oj - O.2O2 +Yi T +Y2 T^, P, 

+ 2p2 T + Yi m + 2y2 mT), O^ - Yz (Tt - Tj)^ + 202 NI + (YI + Y2 ^(Tj - T^))T, Pi + 2P2 (T* -

T3) + (Y, +Y2 + 2(% - %))m), (a, 202 - Y2 (% + (Yi +Y2 + 2(% - %))T, P, + 2P2 (% 

- Tj) + (YI + Y2 + 2(X, - and (O^ - 0.20% - Y2 (T4 ' + (YI + Y2 + ' T}))T, P, + 

2P2 (T4 - T3) + (YI + Y2 + - T^))m) for the nine cells. The results are reported in Table 

6.6. The table shows that the effect of m, is positive for out-of-the-money options and the 

effect decreases as one moves to the in-the-money options. The effect of m^ is estimated to 
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be negative for in-the-money options. This behavior is true for all the securities and all 

maturities. An increase in the time-to-maturity does not have a uniform effect on option 

prices. However, the derivative is negative for the in-the-money long maturity cell for all 

three securities. 

Table 6.6 The Changes of Option Prices with Respect to m^ and 1^, 
(Derivatives of Equation 6.4) 

Option Class GE GM IBM 
fflt Tu Tit m» T,t 

At-the-Money .729* .086 .729* -.031 .487* .049* 
Short Maturity (.064) (.070) (.077) (.076) (.023) (.022) 
In-the-Money - .080 .143 • .309* .145 -.130* .150* 
Short Maturity (.055) (.074) (.090) (.082) (.020) (.023) 
Out-of-the-Money 1.620* .043 2.308* -.263 1.229* -.048 
Short Maturity (.156) (.142) (.260) (.239) (.055) (.041) 
At-the-Money .899* .131* 1.200* - .099* .713* .032* 
Medium Maturity (.063) (.015) (.063) (.012) (.026) (.007) 
In-the-Money -.032 .062* - .086 .028* - .083* -.106* 
Medium Maturity (.075) (.015) (.116) (.005) (.026) (.016) 
Out-of-the-Money 1.674*" .084*» 2.467*» - .059» 1.268*» .044*» 
Medium Maturity (.059) (.031) (.067) (.039) (.021) (.013) 
At-the-Money - .076 .212* .980* -.091 - .246* -.010 
Long Maturity (.080) (.079) (.093) (.080) (.030) (.022) 
In-the-Money -1.019* -.558* - .544* - .424* - .800* - .455* 
Long Maturity (.065) (.063) (.103) (.068) (.029) (.029) 
Out-of-the-Money 1.150* .640* 2.496*» -.11*» 1.438*» .019» 
Long Maturity (.129) (.052) (.067) (.039) (.021) (.013) 
The number in parenthesis is the approximated standard deviation 

» No observation in the cell ; • Significant at 5% 

The Black-Scholes prices and the actual prices are computed to the predicted prices 

of Model 6.3 for the observations not used in the fitting. The Black-Scholes model prices are 

calculated based on the at-the-money implied volatility. The results are given in Tables 6.7-

6.9 for GE, GM, and IBM options, respectively. The SSE given in the last part of the tables 

is the sum of squared deviations between the actual price and the Black-Scholes price and 

between the actual price and the price predicted by Model 6.3. 
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Table 6.7 Black-Scholes, Actual and Predicted Prices for GE Options 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

50 0.56831 0.625 0.46384 2331 1.95343 1.875 1.900425 
51 0.62437 0.625 0.521014 2332 1.85038 1.875 1.794223 
52 0.62437 0.625 0.524289 2532 2.48784 2.5 2.486327 
53 0.62437 0.625 0.526652 2533 2.48784 2.5 2.476458 
54 0.62437 0.5625 0.528358 2534 2.27911 2.375 2.247554 
127 1.88527 1.75 1.760967 2535 2.27911 2.25 2.242413 
128 1.81758 1.625 1.696604 2536 2.27911 2.375 2.238701 
129 1.78435 1.625 1.666937 2606 4.23242 4.25 4.29404 
130 1.85122 1.625 1.742327 2607 4.23242 4.25 4.325828 
131 1.78391 1.5 1.673231 2608 4.01704 4 4.105459 
287 0.00646 0.0625 0.036993 2609 4.19109 4.25 4.316943 
288 0.00863 0.0625 0.030013 2610 4.19109 4.25 4.328896 
289 0.01142 0.0625 0.026052 3123 4.01308 4 4.024291 
290 0.00863 0.0625 0.019032 3124 4.01308 4 4.041825 
291 0.01497 0.0625 0.021236 3125 4.01308 4 4.05448 
657 0.1058 0.125 0.114295 3126 4.01308 3.875 4.063615 
658 0.10264 0.1875 0.104088 3127 4.01308 4 4.070208 
659 0.10264 0.1875 0.09851 3360 4.77621 4.875 4.951339 
660 0.10264 0.1875 0.094485 3361 4.77621 5 4.935777 
661 0.10998 0.125 0.098008 3362 4.77621 5 4.924544 
705 0.44273 0.25 0.285993 3363 4.6823 5 4.818536 
706 0.41155 0.25 0.283957 3364 4.5887 4.5 4.715098 
707 0.39503 0.375 0.287703 3536 5.8581 6.25 6.206198 
708 0.39503 0.375 0.301465 3537 5.8581 6.25 6.174583 
709 0.39503 0.375 0.311398 3538 5.8581 6.25 6.151763 

1173 0.75602 0.625 0.680284 3539 5.8581 6.25 6.135292 
1174 0.75602 0.625 0.675075 3540 5.8581 6.125 6.123403 
1175 0.75602 0.625 0.671315 3570 7.3114 7.75 7.577784 
1176 0.71125 0.5625 0.625603 3571 7.3114 7.75 7.632518 
1177 0.72349 0.5625 0.635917 3572 7.3114 7.75 7.672024 
1378 1.99848 1.625 1.630868 3573 7.3114 7.75 7.70054 
1379 1.99848 1.625 1.708551 3574 7.3114 7.75 7.721122 
1380 3.90323 3.75 3.892033 3659 8.512 8.5 8.585025 
1381 2.03465 1.75 1.843957 3660 8.712 8.75 8.80138 
1382 2.10827 1.75 1.952468 3661 8.612 8.625 8.712896 
1430 0.0032 0.0625 0.045829 3662 13.6109 13.75 13.656541 
1431 0.00487 0.0625 0.035215 3663 13.6109 13.75 13.662598 
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Table 6.7 (continued) 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

1432 0.00728 0.0625 0.028607 3694 10.7737 11 11.053657 
1433 0.02166 0.0625 0.03521 3695 9.8081 10 10.102248 
1434 0.02166 0.0625 0.030685 3696 9.0267 9.25 9.324764 
2202 1.0367 0.8125 0.930048 3697 9.0267 9.25 9.352756 
2203 1.0367 0.875 0.947069 3698 9.611 9.75 9.974156 
2204 1.0367 0.875 0.959355 3708 9.2684 9.625 9.673562 
2205 1.0367 0.875 0.968222 3709 9.2684 9.625 9.708613 
2206 1.0367 0.875 0.974623 3710 11.696 11.75 12.182343 
2328 2.05982 2 2.00444 3711 11.2355 11.75 11.738593 
2329 2.11426 2 2.064662 3712 11.2208 11.75 11.736393 
2330 2.05982 1.875 2.009958 SSE 4.119893 0.930724 

Table 6.8 Black-Scholes, Actual and Predicted Prices for GM Options 

Black- Black-
OBS Scholes Actual Predicted OBS Scholes Actual Predicted 

Prices Prices Prices Prices Prices Prices 
47 0.7729 0.5625 0.638808 1830 2.23826 2.375 2.27946 
48 0.74752 0.625 0.623077 1831 2.23826 2.25 2.277574 
49 0.76162 0.625 0.6442 1934 4.296 4.375 4.434228 
50 0.76162 0.625 0.648179 1935 4.42221 4.625 4.565603 
51 0.76162 0.625 0.650806 1936 3.66902 3.5 3.719215 

105 1.59831 1.5 1.439143 1937 3.66902 3.5 3.714731 
106 1.56233 1.8125 1.38081 1938 3.42288 3.25 3.43399 
107 1.56233 1.4375 1.366854 2537 2.60981 2.5 2.5762 
108 1.52688 1.25 1.321129 2538 2.60981 2.625 2.626528 
109 1.56233 1.375 1.351548 2539 2.60981 2.625 2.659768 
130 0.00582 0.0625 0.043925 2540 2.60981 2.5 2.681723 
131 0.00398 0.0625 0.029174 2541 2.60981 2.75 2.696223 
132 0.00854 0.0625 0.024977 2906 1.94304 2.0625 2.044965 
133 0.00854 0.0625 0.019289 2907 1.87006 1.9375 1.955373 
134 0.0011 0.0625 0.008365 2908 1.94304 2 2.025734 
417 0.15481 0.25 0.186776 2909 1.94304 2 2.020682 
418 0.1205 0.1875 0.1394 2910 1.94304 2.25 2.017345 
419 0.1205 0.1875 0.129491 2940 2.71917 3.125 3.073704 
420 0.1107 0.1875 0.113612 2941 2.83036 3.125 3.11321 
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Table 6.8 (continued) 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

421 0.07096 0.125 0.071854 2942 2.90243 3.375 3.135526 

462 0.31643 0.4375 0.29022 2943 2.97532 3.5 3.177715 

463 0.36824 0.5 0.335573 2944 3.02972 3.75 3.212733 

464 0.36824 0.5 0.33276 3135 3.45477 3.5 3.703376 

465 0.38687 0.5 0.348888 3136 3.36115 3.625 3.570845 

466 0.33879 0.5 0.30224 3137 3.36115 3.625 3.550506 

814 0.73471 0.75 0.717926 3138 3.36115 3.625 3.537073 

815 0.64628 0.6875 0.610477 3139 3.29012 3.5 3.450206 

816 0.64628 0.6875 0.596485 3143 4.65417 4.625 4.685046 

817 0.62231 0.625 0.563731 3144 4.60608 4.625 4.671591 

818 0.599 0.625 0.534851 3145 4.60608 4.625 4.693959 

964 1.683 1.625 1.487484 3146 4.60608 4.625 4.708733 

965 1.683 1.5625 1.479218 3147 4.67542 4.75 4.794897 

966 1.64584 1.5625 1.43502 3291 7.50872 7.75 7.608372 

967 1.82545 1.8125 1.621902 3292 7.60872 7.75 7.691537 

968 1.82545 1.8125 1.61952 3293 7.50872 7.75 7.590136 

1414 1.3678 1.375 1.386785 3294 7.50872 7.75 7.585345 

1415 1.3678 1.3125 1.394569 3295 7.50872 7.75 7.582181 

1416 1.3678 1.375 1.39971 3334 7.53134 7.5 7.601417 

1417 1.3678 1.3125 1.403105 3335 7.52225 7.375 7.617415 

1418 1.3678 1.375 1.405348 3336 6.70706 6.625 6.837447 

1585 1.52543 1.625 1.604661 3337 6.29963 6.375 6.448378 

1586 1.52543 1.625 1.591228 3338 5.90148 6.375 6.064678 

1587 1.52543 1.625 1.582355 3386 7.3745 7.625 7.73288 

1588 1,52543 1.625 1.576495 3387 7.3745 7.75 7.721572 

1589 1.52543 1.875 1.572625 3388 7.3745 7.75 7.714104 

1597 2.30201 2.75 2.620391 3389 7.27952 7.75 7.611914 

1598 2.21824 2.75 2.444259 3390 7.3745 7.75 7.705913 

1599 2.21824 2.625 2.38772 3418 7.05262 7.375 7.317628 

1600 2.21824 2.5 2.350377 3419 7.02798 7.25 7.303879 

1601 1.72066 2.0625 1.792569 3420 7.02798 7.25 7.311839 

1827 2.41681 2.5 2.49008G 3421 7.02798 7.25 7.317096 

1828 2.47797 2.5 2.551047 3422 6.86989 7.5 7.155538 

1829 2.23826 2.5 2.282317 SSE 5.281217 2.204872 
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Table 6.9 Black-Scholes, Actual and Predicted Prices for IBM Options 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

208 0.0084 0.0625 0.047643 19385 3.467 3.75 3.680821 

209 0.0079 0.0625 0.036595 19386 3.467 3.75 3.629878 

210 0.0079 0.0625 0.02882 19387 3.467 3.625 3.592362 

211 0.0079 0.0625 0.023094 19388 3.467 3.75 3.564736 

212 0.0088 0.0625 0.01978 19389 3.409 3.875 3.484333 

237 0.2117 0.3125 0.255007 20048 5.7306 5.75 5.730835 

238 0.2336 0.3125 0.259393 20049 5.6684 5.625 5.694421 

239 0.2918 0.375 0.302778 20050 5.6065 5.5 5.650628 

240 0.2918 0.375 0.293958 20051 5.6065 5.5 5.666594 

241 0.2918 0.375 0.287463 20052 5.6065 5.5 5.678352 

269 1.1286 1.1875 1.151469 20141 7.5777 7.625 7.558832 

270 1.277 1.1875 1.271694 20142 7.5148 7.5 7.537117 

271 1.2549 1.25 1.2303 20143 7.5148 7.625 7.569021 

272 1.3219 1.3125 1.282383 20144 7.7412 7.75 7.827062 

273J 1.3679 1.3125 1.317631 20145 7.6142 7.75 7.713145 

308 2.7073 2.75 2.716319 22318 3.6229 3.625 3.630286 

309 2.7395 2.75 2.724726 22319 3.6229 3.5 3.634179 

310 2.9044 2.875 2.863325 22320 3.6229 3.75 3.639157 

311 2.9381 2.875 2.911696 22321 8.6218 8.625 8.699737 

312 2.9044 2.875 2.85342 22322 3.6229 3.5 3.640712 

1034 0.0141 0.0625 0.049653 24699 6.8396 6.875 6.802919 

1035 0.0169 0.0625 0.042943 24700 6.8396 6.625 6.84189 

1036 0.0169 0.0625 0.035976 24701 6.8396 6.125 6.870588 

1037 0.0169 0.0625 0.030845 24702 6.8396 6.75 6.891721 

1038 0.0141 0.0625 0.024316 24703 6.8396 6.75 6.907284 

5326 0.7143 0.5 0.506248 24768 7.0699 8 7.588088 

5327 0.7143 0.5 0.556875 24769 7.1532 8 7.581944 

5328 0.7143 0.5 0.594157 24770 6.987 7.875 7.341563 

5329 0.7143 0.5 0.621612 24771 6.7405 7.25 7.035581 

5330 0.7143 0.5 0.64183 24772 6.3837 7.25 6.626749 

6183 1.3582 1.3125 1.310273 25035 8.7033 8.75 8.875886 

6184 1.3582 1.375 1.314011 25036 12.4162 13 12.71804 

6185 1.3582 1.375 1.316764 25037 8.8592 9 9.088019 

6186 1.3582 1.4375 1.318791 25038 8.8592 9 9.103444 

6187 1.3582 1.375 1.320284 25039 8.9376 9.125 9.19653 

7442 3.2796 3.125 3.158571 25094 10.0699 10.5 10.19452 

7443 3.2796 3.25 3.183293 25095 10.5819 10.875 10.71819 



www.manaraa.com

140 

Table 6.9 (continued) 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

OBS 
Black-

Scholes 
Prices 

Actual 
Prices 

Predicted 
Prices 

7444 3.2359 3.125 3.155889 25096 10.7821 11.25 10.92631 
7445 3.2359 3.125 3.169296 25097 10.7821 11.25 10.93368 
7446 1.6981 1.625 1.592617 25098 10.7062 11.25 10.86475 
7785 3.3134 3.125 3.157957 25155 12.5207 12.625 12.75325 
7786 5.1694 5 5.13387 25156 13.0207 12.875 13.18548 
7787 5.1197 5 5.099579 25157 13.5207 13.375 13.63132 
7788 5.1197 5 5.11274 25158 13.5207 13.375 13.60126 
7789 5.0211 4.875 5.018991 25159 13.6207 13.75 13.67634 

12505 0.045 0.0625 0.073544 25351 11.7732 11.875 11.88333 
12506 0.045 0.0625 0.065879 25352 16.5427 16.5 16.56446 
12507 0.0365 lJ3.0625 0.051736 25353 16.6427 16.75 16.66645 
12508 0.0365 0.0625 0.047579 25354 11.6736 11.5 11.79844 
12509 0.045 0.0625 0.053016 25355 16.6427 16.75 16.67222 
18947 2.8572 2.5625 2.643016 25415 17.7833 17.75 18.11311 
18948 2.8572 2.5625 2.702308 25416 12.8937 13.125 13.19438 
18949 2.8572 2.625 2.745971 25417 12.6847 13 13.00682 
18950 2.8572 2.625 2.778126 25418 12.6847 13 13.02384 
18951 2.6572 2.625 2.801804 25419 12.6847 13 13.03637 

SSE 7.31529 3.440291 

From Tables 6.7-6.9, on the average, the predicted prices of Model 6.3 are much 

closer to the actual option prices than are the Black-Scholes prices for all option classes and 

securities. The sum of squares of the prediction errors (SSE) of Model 6.3 is less than half of 

that for the Black-Scholes model. The model predicts GE options with an SSE that is one 

fourth that of the Black-Scholes model. 

The predictions of Tables 6.7-6.9 used the full Model 6.3 which includes the previous 

price in the prediction through the Autoregressive model for the errors. The autocorrelation 

among the residuals of Model 6.3 plays an important part in reducing the prediction error of 

the model price. As can be seen from Table 6,10, the large difference in the prediction error 

sum of squares of Model 6.3 relative to the Black-Scholes model can be divided into two 
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parts. If the prediction is constructed from Model 6.3 without the previous deviation, the 

SSE are those given in the second column. These SSE are 51% to 87% of those of the Black-

Scholes model. The inclusion of the previous deviation in the prediction reduces the 

prediction SSE by about one half. 

Model 6.3, which is based on the structure of the robust model from Chapter 5, out

performs the Black-Scholes model in predicting the future values of option prices. Although 

the robust model of Chapter 5 was useful in investigating the mispricing of the Black-

Scholes model, the robust model may produce negative estimated option prices if it is used to 

predict very low values of market option prices. Model 6.3 has corrected this problem by 

placing the effects of maturity and striking price in an exponent. In addition, the effects of 

maturity and striking price of Model 6.3 are specified as the functions of continuous 

variables describing the behavior of time-to-maturity and degree-of-moneyness, respectively. 

Thus, the model has no jumps in the model prices between categories. The results show that 

the predictions of Model 6.3 are far better than those of the Black-Scholes model. 

Table 6.10 The Sum of Squares of the Prediction Errors 

Security 
Prediction Error Sum of Squares 

Security 
BS Not Using Previous 

Deviation 
One Period with 

AR 
GE 4.12 2.09 .93 
GM 5.28 3.96 2.2 
IBM 7.32 6.37 3.44 
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CHAPTER 7. CONCLUSION 

The discussion in Chapter 4 shows that the amount of work devoted to empirical 

testing of call options is rather impressive. While various approaches have been applied to 

different data sets and time periods, some common results appear to be dominating the 

studies. 

First, with respect to model validity, the major conclusions are: 

1. The Black-Scholes performs relatively well, especially for the at-the-money options. 

Deviations from model prices are consistently observed for deep-n and deep-out-of-the 

money options. 

2. No alternative model consistently offers better predictions of market prices than the 

Black-Scholes model. There is some evidence to prefer the constant elasticity of variance 

model, but it is not conclusive. 

3. The major problem faced by the Black-Scholes model, or any other model suggested so 

far, is the nonstationarity of the risk estimator of the underlying stock. The nature of the 

nonstationarity is not clear yet. Nevertheless, for short time periods, say of days, the 

Black-Scholes model may give good predictions of market prices and reveal under- and 

overvalued options. 

4. Trading machanism and market synchronization may have affected the results of the 

tests. However, by using more detailed and accurate data, the major results were 

reconfirmed. 

5. No one accounts for trasaction costs and taxes, which may affect the prices of traded 

options. 
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Second, the evidence so far is also consistent with rejecting the null hypothesis of 

market syschronization. The significant ex-post hedge returns reported by a few of the 

studies may indicate the lack of either trading synchronization or data synchronization. This 

conclusion is also reached from testing the boundary conditions. 

Third, the results with respect to option market efficiency are not conclusive. While 

ex-ante hedge returns are usually found to be significant and hence indicate market 

inefficiency, they are completely eliminated after the proper adjustments for transaction costs 

for the most efficient trader are introduced. All agree that an outsider to the exchange cannot 

consistently make above-normal profits. A market maker who is affected by the bid-ask 

spread, and who incurs opportunity costs, may also find it difficult to generate above-normal 

net excess profits. 

Our study examines pricing performance of the Black-Scholes model by constructing 

a robust model that corrects the problem of specification error faced by the conventional 

approach. The model includes the linear effect of striking price and maturity directly in to 

the option prices as well as allows option prices to be serially correlated. This approach not 

only improves the efficiency of the estimates but also reduces the bias of the regression 

variance and the coefficient estimates, particularly, the effect of striking price and maturity. 

The development of the robust model starts with testing the implication of the Black-

Scholes model assumption, i.e., the stability of implicit volatility over option positions. In 

order to eliminate the possibility that option variances may differ across maturity and/or 

exercise price, the weighted non-linear least squares is used to fit the three alternative 

models: (1) varying implied volatility over maturity month, (2) varying implied volatility 

over the in-the-money degree, (3) both (1) and (2) at the same time. The test results strongly 

indicate the inferiority of the Black-Scholes model in favor of the third alternative model. 

One of the reason that the third alternative model fits the data most may stem from the 
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information content about dividend announcement that embeds in stock prices, and thus, the 

option prices. The other may arise from the distinct character of option prices themselves 

over their maturity and striking price. Thus, there is no one estimated implied volatility seem 

to be suitable in explaining the pricing behavior of the whole series of option prices. 

Basing upon the acceptance of the Black-Scholes model with flexible implied 

volatility across maturity month and degree-of-moneyness, a robust model is built by 

incorporating the linear effect of exercise opportunity and time-to-expiration directly into the 

model. In addition, the error term of the model is assumed to follow the first order 

autoregressive (ARl) process. Without this modification, the Durbin-Watson test statistic is 

much smaller than two which indicates the problem of positive serial correlation. However, 

this problem vanishes after adding the autoregressive term. 

The implication of the Black-Scholes assumption of constant volatility is retested 

basing upon the robust model and the model without the autoregressive error. The test results 

still lead to the rejection of the implication of the Black-Scholes assumption. Nevertheless, 

this rejection can not contribute to the claim that the variance rate of stock return follows the 

Ito' process. 

Although, the robust model improves the efficiency of the estimates and also reduces 

the bias of the regression variance and the coefficient estimates, the Black-Scholes model 

price with flexible implied volatilities still exhibits pricing biases across the degree-of-

moneyness and maturity. However, the biased patterns exhibiting in one underlying security 

differ from the other. 

Most empirical studies use the at-the-money implied volatility as the estimated for 

the anticipated volatility of the stock rate of return, because the estimate seem to be stable 

over options' maturity. Thus, the study also investigates the stability of the estimated implied 

volatilities of the at-the-money options. After controlling for the effect of striking price and 
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maturity (via robust model), the results show that within the class of the at-the-money itself 

(the at-the-money near in- or out-of-the-money), the estimated implied volatilities do differ 

across their degree of at-the-money and maturity (even for those whose time-to-maturity is at 

least ninety days to expiration). 

In examining the ability of the two conventional approaches in identifying the 

mispricing of the Black-Scholes model, the results show that the regression approach may 

mislead the true mispricing behavior of the model price. Since, the simple regression 

technique can not classify options according to their degree-of-moneyness and maturity 

month, it can not identify the mispricing with respect to option positions. The average mean 

mispricing approach, however, may be able to indicate direction of mispricing of the model 

price across option positions. The precision of the estimates is much poorer than the results 

that can be obtained from the robust model. 

In investigating the mispricing of the Black-Scholes model price using the 

conventional approach, holding the implied volatility fixed at the at-the-money level, the 

graphical examination reports that for the in-the-money (out-of-the-money) options, model 

estimates tend to be lower (higher) than market prices. Furthermore, the deep out-of-the-

money options have tendency to be overpriced. These results are consistent for all securities 

considered. However, after adjusting for the model specification error, the mispricing of the 

(robust) model completely disappears. The systematic mispricing of the Black-Scholes 

model price induced by the conventional analysis with fixed estimated stock volatility may 

stem from functional form of the model price itself because "the Black/Scholes formula is 

non-linear in the variance, and unbiasedness is not preserved under a non-linear 

transformation' (Butler and Schachter 1986 p. 342). 

The robust model developed in the study is not only useful for investigating the 

systematic mispricing of the Black-Scholes model but also improving the predictability of 
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the call option price. Since, the model has detected the problem of specification error faced 

by the conventional, a reliable statistical inference can be drawn from the model. 

Furthermore, the residual sum of squares from the model reduces dramatically comparing to 

the one from the Black-Scholes model. Thus, a more precise estimate of option price can be 

obtained. However, as for any non-linear model, especially with time series, the estimation 

technique requires a large sample size which may not be able to obtain in such a short period 

study. Fortunately, option pricing theory has long developed the 'put-call parity' which is a 

powerful tool in order to convert put price to be call price. Thus, the obstacle in estimating 

the robust model can be overcome by using this conversion. 

Many studies recently used the at-the-money short maturity implied volatility to 

investigate the empirical impact of stock splits, stock dividends, and their announcements to 

the changes in the stock volatilities and option prices. Firms may decide to apply these 

policies in order to either keep the share prices within some "optimal' range, or convey 

favorable information to public. The ex-date effect of stock splits, stock dividends, and 

annoucements; as documented by Ohlson and Penman (1985), French and Dubofsky (1986), 

Sheikh (1989), and Chang and Chen (1989); would shift the rate of return variances of shares 

or the implied standard deviations upward. These results imply that production technology 

changes affect economic parameter, variance rate of returns. The increases of stock 

volatilities will increase the option returns. However, as shown in the study that the at-the-

money short maturity implied volatilities may not be stable within its degree-of-moneyness. 

On the other hand, the robust model offers a way to estimate the implied volatility that is 

stable across striking prices and maturities. As the result, the estimated implied volatility 

obtained from the robust model may be more closely related to the variance rate of stock 

return than the at-the-money short maturity implied volatility. Thus, the implied volatility of 

the robust model may capture the impact of dividend policies far better than the implied 



www.manaraa.com

147 

volatility of the at-the-money short maturity options. Thus, the robust model is useful for 

further research in not only the option area but also in the stock area. 

Although the robust model of Chapter 5 was useful in investigating the mispricing of 

the Black-Scholes model, the robust model may produce negative values of future option 

prices, especially, for short maturity or out-of-the-money options. However, the model can 

be modified to improve the prediction results by placing the effects of maturity and striking 

price in an exponent. In addition, the effects of maturity and striking price of the robust 

model are specified as the functions of continuous variables describing the behavior of time-

to-maturity and degree-of-moneyness, respectively. Thus, the model has no jumps in the 

model prices between categories. The results show that the predictions of the modified robust 

model are more accurate than those of the Black-Scholes model. 
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